Citation: HAN Bing, CHU Yue-Ying, ZHENG An-Min, DENG Fen. Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 315-323. doi: 10.3866/PKU.WHXB201111232 shu

Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores

  • Received Date: 9 October 2011
    Available Online: 23 November 2011

    Fund Project: 国家自然科学基金(21073228, 20933009, 20921004) (21073228, 20933009, 20921004)国家重点基础研究发展规划项目(973) (2009CB918600)资助 (973) (2009CB918600)

  • The performance of different exchange-correlation functionals for the description of the interaction of pyridine with different cluster models of ZSM-5 zeolite has been assessed. Theoretical calculations show that upon increasing the cluster model from 8T to 128T, the adsorption energy of pyridine in ZSM-5 zeolite increases gradually and reaches convergence by the 72T cluster model. On the basis of the 72T cluster model, the pyridine adsorption energy calculated with different functionals is further examined. Compared to the conventional functionals (B3LYP and M06-2X), the B97D functional which takes into account the dispersion correction provides calculated results that agree well with experimental data. The present results indicate that the B97D functional is suitable for studying long-range interactions in weakly interacting systems.
  • 加载中
    1. [1]

      (1) Weitkamp, J.; Traa, Y. Catal. Today 1999, 49, 193.  

    2. [2]

      (2) Slagtern, A.; Dahl, I. M.; Jens, K. J.; Myrstad, T. App. Catal. A: Gen. 2010, 375, 213.  

    3. [3]

      (3) Luzgin, M. V.; Parmon, V. N. Angew. Chem. Int. Edit. 2008, 47, 4559.  

    4. [4]

      (4) Yu, Z.W.; Zheng, A. M.;Wang, Q.; Huang, S. J.; Deng, F.; Liu, S. B. Chin. J. Magn. Reson. 2010, 27, 485. [喻志武, 郑安民, 王强, 黃信炅, 邓风, 刘尚斌. 波谱学杂志, 2010, 27, 485.]

    5. [5]

      (5) Zheng, A. M.; Huang, S. J.; Deng, F.; Liu, S. B. Phys. Chem. Chem. Phys. 2011, 13, 14889.

    6. [6]

      (6) Zheng, A. M.; Zhang, H. L.; Chen, L.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B 2007, 111, 3085.  

    7. [7]

      (7) Coma, A. Chem. Rev. 1995, 95, 559.  

    8. [8]

      (8) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. Acta Physico- Chimica Sinica 2001, 17, 811. [袁淑萍, 王建国, 李永旺, 彭少逸. 物理化学学报, 2001, 17, 811.]

    9. [9]

      (9) Yang, J.; Sun, Y. X.; Zhao, L. F.; Sun, H. Acta Physico-Chimica Sinica 2011, 27, 1823. [杨静, 孙迎新, 赵立峰, 孙淮. 物理化学学报, 2011, 27, 1823.]

    10. [10]

      (10) Yang, G.;Wang, Y.; Zhou, D. H.; Zhuang, J. Q.; Liu, X. C.; Han, X.W.; Bao, X. H. J. Chem. Phys. 2003, 119, 9765.  

    11. [11]

      (11) Zhou, D. H.; Ma, D.; Liu, X. C.; Bao, X. H. J. Chem. Phys. 2001, 114, 9125.  

    12. [12]

      (12) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, 864.  

    13. [13]

      (13) Kohn,W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.  

    14. [14]

      (14) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.  

    15. [15]

      (15) Schmider, H. L.; Becke, A. D. J. Chem. Phys. 1998, 108, 9624.  

    16. [16]

      (16) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.  

    17. [17]

      (17) Grimme, S. J. Comput. Chem. 2004, 25, 1463.  

    18. [18]

      (18) Grimme, S. J. Comput. Chem. 2006, 27, 1787.  

    19. [19]

      (19) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. C 2008, 112, 6860.  

    20. [20]

      (20) Pidko, E. A.; Hensen, E. J. M.; van Santen, R. A. J. Phys. Chem. C 2008, 112, 19604.  

    21. [21]

      (21) Boronat, M.; Martinez, C.; Corma, A. Phys. Chem. Chem. Phys. 2011, 13, 2603.

    22. [22]

      (22) Boekfa, B.; Choomwattana, S.; Khongpracha, P.; Limtrakul, J. Langmuir 2009, 22, 12990.

    23. [23]

      (23) Vankoningsveld, H.; Van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B 1987, 43, 127.  

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, B.01; Gaussian Inc.:Wallingford, CT, 2009.

    25. [25]

      (25) Maseras, F.; Morokuma, K. J . Comput. Chem. 1995, 16, 1170.  

    26. [26]

      (26) Humbel, S.; Siebe, R. S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.  

    27. [27]

      (27) Lesthaeghe, D.; Speybroeck, V. V.; Marin, G. B.;Waroquier, M. Chem. Phys. Lett. 2006, 417, 309.  

    28. [28]

      (28) Sumpter, B. G. J. Chem. Theory Comput. 2010, 6, 727.  

    29. [29]

      (29) Rigby, A. M.; Kramer, G. J.; van Santen, R. A. J. Catal. 1997, 170, 1.  

    30. [30]

      (30) Zheng, X.; Blowers, P. J. Phys. Chem. A 2006, 110, 2455.  

    31. [31]

      (31) Zheng, A. M.; Zhang, H. L.; Lu, X.; Liu, S. B.; Deng, F. J. Phys. Chem. B 2008, 112, 4496.

    32. [32]

      (32) Zheng, A. M.; Huang, S.; Chen,W.;Wu, P.; Zhang, H.; Lee, H.; Ménorval, L.; Deng, F.; Liu, S. B. J. Phys. Chem. A 2008, 112, 7337.

    33. [33]

      (33) Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem. 1993, 97, 12773.  

    34. [34]

      (34) Datka, J.; Boczar, M.; Rymarowicz, P. J. Catal. 1988, 114, 368.  

    35. [35]

      (35) Dunne, J. A.; Rao, M.; Sircar, S.; Corte, R. J.; Myers, A. L. Langmuir 1996, 12, 5896.  

    36. [36]

      (36) Savitz, S.; Siperstein, F.; Rorte, R. J.; Myers, A. L. J. Phys. Chem. B 1998, 102, 6865.

    37. [37]

      (37) Lee, C.; Parrillo, D. J.; rte, R. J.; Farneth,W. E. J. Am. Chem. Soc. 1996, 118, 3262.  

    38. [38]

      (38) Fuchs, A. H.; Adamo, C. J. Phys. Chem. Lett. 2010, 1, 763.  

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    12. [12]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    18. [18]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    19. [19]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    20. [20]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

Metrics
  • PDF Downloads(1025)
  • Abstract views(2504)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return