Citation: LIU Guan-Feng, HUANG Jian-Hua. Monte Carlo Simulation on the Structures of a Nanoparticle/ Copolymer Mixed System[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 309-314. doi: 10.3866/PKU.WHXB201111211 shu

Monte Carlo Simulation on the Structures of a Nanoparticle/ Copolymer Mixed System

  • Received Date: 29 August 2011
    Available Online: 21 November 2011

    Fund Project: 国家自然科学基金(21171145) (21171145)浙江省自然科学基金(Y4110422)资助项目 (Y4110422)

  • The structures of a nanoparticle/copolymer mixed system were studied using lattice dynamic Monte Carlo simulations. Each copolymer chain consisted of one A bead and three B beads, and the amphiphilic property of the A1B3 chains was represented by an attraction between B-B beads. Nanoparticles were hydrophobic with an attraction amongst themselves. By properly choosing the attraction between the nanoparticle and the B beads, we observe two interesting structures: a nanoparticle/ A1B3 chain core-shell structure and an A1B3 vesicle with nanoparticles dispersed in the hydrophobic shell. The evolutions of these two structures were investigated. Our results show that the A1B3 vesicle acts as a template for the formation of the nanoparticle-dispersed vesicle.
  • 加载中
    1. [1]

      (1) Lipowsky, R. Nature 1991, 349, 475.  

    2. [2]

      (2) Discher, B. M.;Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.  

    3. [3]

      (3) Zhang, L. F.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168.  

    4. [4]

      (4) Zhu, J. T.; Jiang, Y.; Liang, H. J.; Jiang,W. J. Phys. Chem. B 2005, 109, 8619.  

    5. [5]

      (5) Yang, Z. D.; Yuan, J. J.; Chen, S. Y. J. Funct. Poly. 2003, 16, 287. [杨子刚, 袁建军, 程时远. 功能高分子学报, 2003, 16, 287.]

    6. [6]

      (6) Hubert, D. H.W.; Jung, M.; Frederik, P. M.; Bomans, P. H. H.; Meuldijk, J.; German, A. L. Adv. Mater. 2000, 12, 1286.  

    7. [7]

      (7) Hentze, H. P.; Raghavan, S. R.; Mckelvey, C. A.; Kaler, E.W. Langmuir 2003, 19, 1069.  

    8. [8]

      (8) Yeh, Y. Q.; Chen, B. C.; Lin, H. P.; Tang, C. Y. Langmuir 2006, 22, 6.  

    9. [9]

      (9) Li, L. Y.;Wang, J. G.; Sun, P. C.; Liu, X. H.; Ding, D. T.; Chen, T. H. Acta Phys. -Chim. Sin. 2008, 24, 359. [李丽颖, 王金桂, 孙平川, 刘晓航, 丁大同, 陈铁红. 物理化学学报, 2008, 24, 359.]  

    10. [10]

      (10) Bernardi, C.; Dra , V.; Bernardo, F. L.; Girardi, D.; Klein, A. N. J. Mater. Sci. 2008, 43, 469.  

    11. [11]

      (11) Binder,W. H.; Sachsenhofer, R.; Farnik, D.; Blaas, D. Phys. Chem. Chem. Phys. 2007, 9, 6435.

    12. [12]

      (12) Binder,W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2008, 29, 1097.  

    13. [13]

      (13) Lecommandoux, S.; Sandre, O.; Chécot, F.; Perzynski, R. Prog. Solid State Chem. 2006, 34, 171.  

    14. [14]

      (14) Kang, Y. J.; Taton, T. A. Angew Chem. Int. Edit. 2005, 44, 409.  

    15. [15]

      (15) Mu, D.; Zhou, Y. H. Acta Phys. -Chim. Sin. 2011, 27, 374. [牟丹, 周亦含. 物理化学学报, 2011, 27, 374.]

    16. [16]

      (16) Mueller,W.; Koynov, K.; Fischer, K.; Hartmann, S.; Pierrat, S.; Basche, T.; Maskos, M. Macromolecules 2009, 42, 357.  

    17. [17]

      (17) Li, X. L.; Ji, J.;Wang, X. L.;Wang, Y. X.; Shen, J. C. Macromol. Rapid Commun. 2007, 28, 660.  

    18. [18]

      (18) Noguchi, H.; Takasu, M. Phys. Rev. E 2001, 64, 041913.  

    19. [19]

      (19) Yamamoto, S.; Maruyama, Y.; Hyodo, S. J. Chem. Phys. 2002, 116, 5842.  

    20. [20]

      (20) Marrink, S. J.; Mark, A. E. J. Am. Chem. Soc. 2003, 125, 15233.  

    21. [21]

      (21) Vries, A. H.; Mark, A. E.; Marrink, S. J. J. Am. Chem. Soc. 2004, 126, 4488.  

    22. [22]

      (22) Huang, J. H.;Wang, Y.; Qian, C. J. J. Chem. Phys. 2009, 13, 234902.

    23. [23]

      (23) Thompson, R. B.; Ginzburg, V. V.; Matsen, M.W.; Balazs, A. C. Science 2001, 292, 2469.  

    24. [24]

      (24) Wang, Q.; Nealey, P. F.; Pablo, J. J. J. Chem. Phys. 2003, 118, 11278.  

    25. [25]

      (25) Schultz, A. J.; Hall, C. K.; Genzer, J. Macromolecules 2005, 38, 3007.  

    26. [26]

      (26) Ginzburg, V. V.; Qiu, F.; Balazs, A. C. Polymer 2002, 43, 461.  

    27. [27]

      (27) Liu, D. H.; Zhong, C. L. Macromol. Rapid Commun. 2006, 27, 458.  

    28. [28]

      (28) He, L.; Zhang, L.; Liang, H. J. J. Phys. Chem. B 2008, 112, 4194.

    29. [29]

      (29) Carmesin, I.; Kremer, K. Macromolecules 1988, 21, 2819.  

    30. [30]

      (30) Ji, S. C.; Ding, J. D. Langmuir 2006, 22, 553.  

    31. [31]

      (31) Romiszowski, P.; Sikorski, A. Macromol. Symp. 2008, 267, 105.  

    32. [32]

      (32) Zehl, T.;Wahab, M.; Mogel, H. J.; Schiller, P. Langmuir 2006, 22, 2523.  

    33. [33]

      (33) Huh, J.; Ginzburg, V. V.; Balazs, A. C. Macromolecules 2000, 33, 8085.  

    34. [34]

      (34) Mannng, G. S. Biophys. J. 2006, 91, 3607.  

    35. [35]

      (35) Huang, J. H.; Sun, D. C. J. Colloid nterface Sci. 2007, 315, 355.  

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(1311)
  • Abstract views(2255)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return