Citation: GUO Hai-Jun, XIONG Lian, LUO Cai-Rong, DING Fei, CHEN Xin-De, CHEN Yong. Effect of Fe/Co Mass Ratio on Catalytic Performances of Cu-Fe-Co Based Catalysts for Mixed Alcohols Synthesis[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2632-2638. doi: 10.3866/PKU.WHXB20111114 shu

Effect of Fe/Co Mass Ratio on Catalytic Performances of Cu-Fe-Co Based Catalysts for Mixed Alcohols Synthesis

  • Received Date: 17 May 2011
    Available Online: 5 September 2011

    Fund Project: 广州市科技计划项目(2008Zi-D021) (2008Zi-D021)中国科学院可再生能源与天然气水合物重点实验室基金项目(y107jd1001)资助. (y107jd1001)

  • A series of Cu-Fe-Co based catalysts with different mass fractions of Fe and Co were prepared by co-impregnation method. The catalytic performances of the catalysts for mixed alcohols synthesis from carbon monoxide hydrogenation were investigated in a fixed bed flow reactor. The samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), and H2 temperature-programmed reduction (H2-TPR). The results showed that the addition of a suitable content of Co to the Cu-Fe based catalyst significantly improved the space-time yield (STY) and CO conversion while alcohol selectivity was constant. For the catalyst with a mass fraction of Cu, Fe, and Co of 25%, 22%, and 3%, respectively, a STY of 205.6 g·kg-1·h-1 and CO conversion of 56.6% were obtained. The XRD, XPS, and TPR results showed that when the Cu content was unchanged, the introduction of some Co contributed to the formation of a small quantity of the CuFe2O4 phase on the surface of catalysts, which promoted the interaction between Cu and Fe, improved the dispersion of active components and enhanced the catalytic activity and STY of the mixed alcohols. With an increase of the Co content in the catalyst, the interaction between the metallic components was transformed and the Cu-Co spinel phase was generated, leading to a slight decrease of alcohol selectivity.
  • 加载中
    1. [1]

      (1) Lucero, A. J.; Klepper, R. E.; Keefe,W. M.; Sethi, V. K. Div. Fuel Chem . Preprints 2001, 46, 413.

    2. [2]

      (2) Li, D. B.; Ma, Y. G.; Qi, H. J.; Li,W. H.; Sun, Y. H.; Zhong, B. Prog. Chem. 2004, 16, 584. [李德宝, 马玉刚, 齐会杰, 李文怀, 孙予罕, 钟炳. 化学进展, 2004, 16, 584.]

    3. [3]

      (3) Mahdavi, V.; Peyrovi, M. H.; Islami, M.; Mehr, J. Y. Appl. Catal. A-Gen. 2005, 281, 259.  

    4. [4]

      (4) Stelmachowski, M.; Nowicki, L. Appl. Energy 2003, 74, 85.  

    5. [5]

      (5) Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22, 814.  

    6. [6]

      (6) Zhang,W.; Luo, H. Y.; Zhou, H.W.;Wu, Z. H.; Huang, S. Y.; Liu, C. Z.; Chu, H. P.; Lin, P. Z.; Lin, L.W. Chin. J. Catal. 1999, 14, 259. [张伟, 罗洪原, 周焕文, 吴治华, 黄世煜, 刘崇早, 初惠萍, 林培滋, 林励吾. 催化学报, 1999, 14, 259.]

    7. [7]

      (7) Okabe, K.; Murata, K.; Nakanishi, M.; Ogi, T.; Nurunnabi, M.; Liu, Y. Y. Catal. Lett. 2009, 128, 171.  

    8. [8]

      (8) Nowicki, L. Chem. Eng. Process. 2005, 44, 383.

    9. [9]

      (9) Putanov, P.; Boskovic, G.; Vlajnic, G.; Kis, E. J. Mol. Catal. 1992, 71, 81.  

    10. [10]

      (10) Riedel, T.; Claeys, M.; Schulz, H.; Schaub, G.; Nam, S. S.; Jun, K.W.; Choi, M. J.; Kishan, G.; Lee, K.W. Appl. Catal. A- Gen. 1999, 186, 201.  

    11. [11]

      (11) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H. Acta Phys. -Chim. Sin. 2008, 24, 833. [林明桂, 房克功, 李德宝, 孙予罕. 物理化学学报, 2008, 24, 833.]

    12. [12]

      (12) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H. Catal. Commun. 2008, 9, 1869.  

    13. [13]

      (13) Ran, H. F.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Natur. Gas Chem. Ind. 2010, 35, 1. [冉宏峰, 房克功, 林明桂, 孙予罕. 天然气化工, 2010, 35, 1.]

    14. [14]

      (14) Su, Y. L.; Guo, Y. Q.;Wang, X. Y.;Wang,W. X.; Zhang, Y. Z.; Guan, X. X. Synthesis of Alcohol Catalyst and Its Preparation Method. CN Patent, CN 1481934, 2004-03-17. [苏运来, 郭益群, 王向宇, 王文祥, 张元珍, 关新新. 合成低碳醇催化剂及其制备方法: 中国, CN1481934[P], 2004-03-17.]  

    15. [15]

      (15) Su, Y. L.; Ye, C. M.; Sun, J.W.;Wang, X. Y.; Guo, Y. Q. Petrochem. Technol. 2002, 8, 612. [苏运来, 叶长明, 孙建伟, 王向宇, 郭益群. 石油化工, 2002, 8, 612.]

    16. [16]

      (16) Sun, Y. H.; Chen, J. G.;Wang, J. G.; Jia, L. T.; Hou, B.; Li, D. B.; Zhang, J. Chin. J. Catal. 2010, 31, 919. [孙予罕, 陈建刚, 王俊刚, 贾丽涛, 侯博, 李德宝, 张娟. 催化学报, 2010, 31, 919.]

    17. [17]

      (17) Ding, N.; Zeng, S. H.; Su, H. Q.; Yang, H. L. Prog. Chem. 2009, 28, 14. [丁宁, 曾尚红, 苏海全, 杨海龙. 化工进展, 2009, 28, 14.]

    18. [18]

      (18) Ma, Z. Y.; Yang, C.; Dong, Q. N.;Wei,W.; Chen, J. G.; Li,W. H.; Sun, Y. H. Chem. J. Chin. Univ. 2005, 26, 902. [马中义, 杨成, 董庆年, 魏伟, 陈建刚, 李文怀, 孙予罕. 高等学校化学学报, 2005, 26, 902.]

    19. [19]

      (19) Mahdavi, V.; Peyrovi, M. H.; Islami, M.; Mehr, J. Y. Appl. Catal. A-Gen. 2005, 281, 259.  

    20. [20]

      (20) Ma, X. D.; Sun, Q.W.; Ying,W. Y.; Fang, D. Y. J. Natur. Gas Chem. 2009, 18, 354.  

    21. [21]

      (21) Yang, X. M.; Zhu, X. F.; Hou, R. R.; Zhou, L. P.; Su, Y. L. Fuel. Process. Technol. 2011, 92, 1876.  

    22. [22]

      (22) Huang, L. H. Study on Novel Catalysts for Higher Alcohols Synthesis from CO Hydrogenation. Ph. D. Dissertation, Sichuan University, Chengdu, 2006. [黄利宏. 合成气催化转化制低碳醇用新型催化剂研究[D]. 成都: 四川大学, 2006.]  

    23. [23]

      (23) Xu, J.; Yang, S.W.; Li, C.; Xin, Q. J. Natur. Gas Chem. 2000, 4, 304.

    24. [24]

      (24) Figueiredo, R. T.; Martinez-Arias, A.; Lopez, G. M.; Fierro, J. L. G. J. Catal. 1998, 178, 146.  

    25. [25]

      (25) Velu, S.; Suzuki, K.; Vijayaraj, M.; Barman, S.; pinath, S. C. Appl. Catal. B- Environ. 2005, 55, 287.  

    26. [26]

      (26) Chusuei, C. C.; Brookshier, M. A.; odman, D.W. Langmuir 1999, 15, 2806.  

    27. [27]

      (27) Li, Z. H.; Huang,W.; Zuo, Z. J.; Song, Y. J.; Xie, K. C. Chin. J. Catal. 2009, 30, 171. [李志红, 黄伟, 左志军, 左志军, 宋雅君, 谢克昌. 催化学报, 2009, 30, 171.]

    28. [28]

      (28) Kuivila, C. S.; Butt, J. B.; Stair, P. C. Appl. Surf. Sci. 1988, 32, 99.  

    29. [29]

      (29) Fierro, G.; Lo, J. M.; Inversi, M.; Dra ne, R.; Porta, P. Top Catal. 2000, 10, 39.  

    30. [30]

      (30) Xu, H. Y.; Chu,W.; Zhou, J. Ind. Catal. 2008, 16, 105. [徐慧远, 储伟, 周俊. 工业催化, 2008, 16, 105.]

    31. [31]

      (31) Dalmon, J. A.; Chaumette, P.; Mirodatos, C. Catal. Today 1992, 15, 101.  

    32. [32]

      (32) Faungnawakij, K.; Tanaka, Y.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B-Environ. 2007, 74, 144.  

    33. [33]

      (33) Bian, G.; Oonuki, A.; Kobayashi, Y.; Koizumi, N.; Yamada, M. Appl. Catal. A- Gen. 2001, 219, 13.  

    34. [34]

      (34) Lglesia, E. Appl. Catal. A-Gen. 1997, 161, 59.  

    35. [35]

      (35) Schulz, H. Appl. Catal. A-Gen. 1999, 186, 3.  

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    19. [19]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(1125)
  • Abstract views(2319)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return