Citation: ZHUANG Ke, QIU Jing, XU Bo-Lian, FAN Yi-Ning. Promotional Effect of Cerium Oxide on the Catalytic Properties of Ce-Mn-Ti-O Catalysts for Selective Catalytic Reduction of NO[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 681-685. doi: 10.3866/PKU.WHXB201111141 shu

Promotional Effect of Cerium Oxide on the Catalytic Properties of Ce-Mn-Ti-O Catalysts for Selective Catalytic Reduction of NO

  • Received Date: 17 August 2011
    Available Online: 29 December 2011

  • The promotional effect of cerium oxide on the catalytic properties of Ce-Mn-Ti-O composite oxide catalysts prepared by the sol-gel method was studied using NH3-temperature programmed desorption (NH3-TPD), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and BET surface area measurements combined with microreactor tests of NO selective catalytic reduction (SCR). The results showed that the addition of a cerium oxide component remarkably increased the low-temperature SCR activity of Mn-Ti-O composite oxide catalyst. When the cerium content was increased, NO conversion increased significantly and reached a maximum around Ce/Mn molar ratio of 0.08. Further increases in the cerium content resulted in a decrease in NO conversion over the catalyst. The experimental results indicated that the addition of a cerium oxide component does not influence the surface acidity of Mn-Ti-O composite oxide catalyst, but increases the surface concentration of catalytically active Mn species, the relative content of Mn4+, and the reducibility of Mn species, leading to an increase in the SCR activity of Ce-Mn-Ti-O composite oxide catalysts. When the Ce/Mn molar ratio was greater than 0.08, the formation of amorphous multilayer Ce-O-Mn species composed of Ce and Mn species may reduce the Mn/Ti molar ratio and the reducibility of Mn species, leading to a decrease in the SCR activity of Ce-Mn-Ti-O composite oxide catalysts.
  • 加载中
    1. [1]

      (1) Smirniotis, P. G.; Sreekanth, P. M.; Pena, D. A.; Jenkins, R. G. Ind. Eng. Chem. Res. 2006, 45, 6436.  

    2. [2]

      (2) Ettireddy, P. R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P. G. Appl. Catal. B 2007, 76, 123.  

    3. [3]

      (3) Smirniotis, P. G.; Pena, D. A.; Uphade, B. S. Angew. Chem. Int. Edit. 2001, 40, 2479.  

    4. [4]

      (4) Pena, D. A.; Uphade, B. S.; Smirniotis, P. G. J. Catal. 2004, 221, 421.  

    5. [5]

      (5) Qi, G. S.; Yang, R. T. Appl. Catal. B 2003, 44, 217.  

    6. [6]

      (6) Shen, B. X.; Liu, T. Acta Phys. -Chim. Sin. 2010, 26, 3009. [沈伯雄, 刘亭. 物理化学学报, 2010, 26, 3009.]

    7. [7]

      (7) Lin, T.; Zhang, Q. L.; Li,W.; ng, M. C.; Xing, Y. X.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2008, 24, 1127. [林涛, 张秋林, 李伟, 龚茂处, 幸怡汛, 陈耀强. 物理化学学报, 2008, 24, 1127.]  

    8. [8]

      (8) Aylor, A.W.; Lobree, L. J.; Reimer, J. A.; Bell, A. T. J. Catal. 1997, 170, 390.  

    9. [9]

      (9) Wu, Z.; Jiang, B. Q.; Liu, Y. Appl. Catal. B 2008, 79, 347.  

    10. [10]

      (10) Sreekanth, P. M.; Pena, D. A.; Smirniotis, P. G. Ind. Eng. Chem. Res. 2006, 45, 6444.  

    11. [11]

      (11) Long, R. Q.; Yang, R. T.; Chang, R. Chem. Commun. 2002, 452.

    12. [12]

      (12) Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C. D. Appl. Catal. B 2007, 73, 60.  

    13. [13]

      (13) Roy, S.; Viswanath, B.; Hegde, M. S.; Madras, G. J. Phys. Chem. C 2008, 112, 6002.  

    14. [14]

      (14) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Zhao,W. R.; Guan, B. H. J. Hazard. Mater. 2007, 145, 488.  

    15. [15]

      (15) Qi, G.; Yang, R. T. J. Catal. 2003, 217, 434.

    16. [16]

      (16) Tang, X.; Hao, J.; Yi, H.; Li, J. Catal. Today 2007, 126, 406.  

    17. [17]

      (17) Qi, G.; Yang, R. T.; Chang, R. Appl. Catal. B 2004, 51, 93.  

    18. [18]

      (18) Wu, Z. B.; Jin, R. B.; Liu, Y.;Wang, H. Q. Catal. Commun. 2008, 9, 2217.  

    19. [19]

      (19) Kim, Y. J.; Kwon, H. J.; Nam, I. S.; Choung, J.W.; Kil, J. K.; Kim, H. J.; Cha, M. S.; Yeo, G. K. Catal. Today 2010, 151, 244.  

    20. [20]

      (20) Marín, P.; Fissore, D.; Barresi, A. A.; Ordóñez, S. Chemical Engineering and Processing: Process Intensification 2009, 48, 311.  

    21. [21]

      (21) Tang, F.; Xu, B.; Shi, H.; Qiu, J.; Fan, Y. Appl. Catal. B 2010, 94, 71.  

    22. [22]

      (22) Ni, Z.; Chen, A.; Fang, C.;Wang, L.; Yu,W. J. Phys. Chem. Solids 2009, 70, 632.  

    23. [23]

      (23) Ballarini, N.; Cavani, F.; Marion, P.; Tonielli, N.; Trifirò, F. Catal. Today 2009, 142, 170.  

    24. [24]

      (24) Cheng, R.; Shu, Y.; Li, L.; Zheng, M.;Wang, X.;Wang, A.; Zhang, T. Appl. Catal. A 2007, 316, 160.  

    25. [25]

      (25) Heinrich, F.; Schmidt, C.; Löffler, E.; Menzel, M.; Grünert,W. J. Catal. 2002, 212, 157.  

    26. [26]

      (26) Martínez-Arias, A.; Fernández-García, M.; Soria, J.; Conesa, J. C. J. Catal. 1999, 182, 367.  

    27. [27]

      (27) Tsuji, T.; Nagao, M.; Yamamura, Y.; Tien Tai, N. Solid State Ionics 2002, 154-155, 381.

    28. [28]

      (28) Villaseñor, J.; Reyes, P.; Pecchi, G. Catal. Today 2002, 76, 121.  

    29. [29]

      (29) Mohamed, M. M.; Othman, I.; Mohamed, R. M. Journal of Photochemistry and Photobiology A: Chemistry 2007, 191, 153.  

    30. [30]

      (30) Nolan, M. J. Phys. Chem. C 2011, 115, 6671.  

    31. [31]

      (31) Nguyen, T. D.; Dinh, C. T.; Do, T. O. Inorganic Chemistry 2011, 50, 1309.  

    32. [32]

      (32) Xu,W. Q.; Yu, Y. B.; Zhang, C. B.; He, H. Catal. Commun. 2008, 9, 1453.  

    33. [33]

      (33) Li, H.; Qi, G.; Tana; Zhang, X.; Huang, X.; Li,W.; Shen,W. Appl. Catal. B 2011, 103, 54.  

    34. [34]

      (34) Borker, P.; Salker, A. V. Materials Chemistry and Physics 2007, 103, 366.  

    35. [35]

      (35) Kapteijn, F.; Sin redjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B 1994, 3, 173.  

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(811)
  • Abstract views(2329)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return