Citation: LIN Xiao, WU Ming-Xing, AN Jiang, MIAO Qing-Qing, QIN Da, MA Ting-Li. Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2577-2582. doi: 10.3866/PKU.WHXB20111112 shu

Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells

  • Received Date: 4 July 2011
    Available Online: 2 September 2011

    Fund Project: 国家自然科学基金(50773008) (50773008)国家高技术研究发展计划(863) (2009AA03Z220)资助项目 (863) (2009AA03Z220)

  • Highly efficient large scale flexible dye-sensitized solar cells (DSCs) were successfully designed and fabricated. By the introduction of a light scattering layer or pressure, the DSC efficiency was greatly improved. The flexible DSCs with a small surface area (0.4 cm × 0.4 cm) gave a high energy conversion efficiency of 5.50%. The energy conversion efficiencies of large area DSCs (2 cm×3 cm, active area of 2.7 cm2) improved from 1.52% to 1.81% and 2.50%, which is an increase of 20.0% and 66.7% compared with the DSCs prepared without any treatment. The 5 cm×7 cm DSCs (active area of 16.2 cm2) without any optimization showed an energy conversion efficiency of 1.60% under a sunlight intensity of 40 mW·cm-2. The mechanism for the improvement in efficiency was also studied. The results of electrochemical impedance spectroscopy (EIS) demonstrated that the pressure method can significantly reduce the series resistance (Rs) and the charge transfer resistance (Rct) in the TiO2/dye/electrolyte interface. Scanning electron microscopy (SEM) showed that the TiO2 particles were far more closely connected after pressing, which was helpful for electron transport in the TiO2 network as well as for dye adsorption. In addition, the photovoltaic parameters of these flexible DSCs were found to be stable after the 900 h stability tests. The experimental results obtained for these flexible DSCs can be used as a foundation for further basic research and for industrialization technical research.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Grätzel, M. Nature 2001, 414, 338.  

    3. [3]

      (3) Tao, L.; Yang, Y. Z.; Shi, C.W.;Wu, Y. C.;Wu, X. Y. Acta Phys. -Chim. Sin. 2010, 26, 578. [桃李, 杨燕珍, 史成武, 吴玉程, 吴小燕. 物理化学学报, 2010, 26, 578.]

    4. [4]

      (4) Li, B.; Cheng, P.; Deng, C. S. Chin. J. Chem. 2007, 20, 816.  

    5. [5]

      (5) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  

    6. [6]

      (6) Pichot, F.; Pitts, J. R.; Gregg, B. A. Langmuir 2000, 16, 5626.  

    7. [7]

      (7) Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Adv. Mater. 2009, 21, 2206.  

    8. [8]

      (8) Wang, Y.;Wu, J. H.; Fan, L. Q.; Lan, Z.; Xiao, Y. M.; Li, Q. H.; Huang, M. L. Mater. Rev. 2010, 24, 131. [王岳, 吴季怀, 范乐庆, 兰章, 肖尧明, 李清华, 黄妙良. 材料导报, 2010, 24, 131.]

    9. [9]

      (9) Wang, M. K.; Anghel, A. M.; Marsan, B.; Ha, N. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976.  

    10. [10]

      (10) Yang, L.; Xin, G.;Wu, L. Q.; Ma, T. L. Prog. Chem. 2009, 21, 2242. [杨丽, 辛刚, 吴丽琼, 马廷丽. 化学进展, 2009, 21, 2242.]

    11. [11]

      (11) Iwasaki, M.; Lee, C.W.; Kim, T. H.; Park,W. K. J. Ceram. Soc. Jpn. 2008, 116, 153.  

    12. [12]

      (12) Lindström, H.; Holmberg, A.; Magnusson, E.; Lindquist, S. E.; Malmqvist, L.; Hagfeldt, A. Nano Lett. 2001, 1, 97.  

    13. [13]

      (13) Lin, H.; Li, X.; Liu, Y. Z.; Li, J. B. Mater. Sci. Eng. B 2009, 161, 2.  

    14. [14]

      (14) Ma, T. L.; Fang, X. M.; Akiyama, M.; Inoue, K.; Nomam, H.; Abe, E. J. Electroanal. Chem. 2004, 574, 77.  

    15. [15]

      (15) Yang, L.;Wu, L. Q.;Wu, M. X.; Xin, G.; Lin, H.; Ma, T. L. Electrochem. Commun. 2010, 12, 1000.  

    16. [16]

      (16) Papageorgiou, N.; Maier,W. F.; Grätzel, M. J. Electrochem. Soc. 1997, 144, 876.  

    17. [17]

      (17) Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Fukui, A.; Yamanaka, R. Appl. Phys. Lett. 2005, 86, 21350.

    18. [18]

      (18) Usami, A. Sol. Energy Mater. Sol. Cells 2000, 64, 73.  

    19. [19]

      (19) Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301.  

    20. [20]

      (20) Liu, J.; Yang, H. T.; Zhang, J. B.; Zhou, X.W.; Lin Y. Acta Phys. -Chim. Sin. 2011, 27, 408. [刘佳, 杨浩田, 张敬波, 周晓文, 林原. 物理化学学报, 2011, 27, 408.]

    21. [21]

      (21) Koide, N.; Islam, A.; Chiba, Y.; Han, L. Y. J. Photochem. Photobiol. A: Chem. 2006, 182, 296.  

    22. [22]

      (22) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.  

    23. [23]

      (23) Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945.  

    24. [24]

      (24) Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 12525.  

    25. [25]

      (25) Ikegami, M.; Suzuki, J.; Teshima, K.; Kawaraya, M.; Miyasaka, T. Sol. Energy Mater. Sol. Cells 2009, 93, 836.  

    26. [26]

      (26) Trupke, T.;Würfel, P.; Uhlendorf, I. J. Phys. Chem. B 2000, 104, 11484.  

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(1080)
  • Abstract views(2644)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return