Citation:
ZHANG Xia, ZHANG Qiang, ZHAO Dong-Xia. Hydrogen Bond Lifetime Definitions and the Relaxation Mechanism in Water Solutions[J]. Acta Physico-Chimica Sinica,
;2011, 27(11): 2547-2552.
doi:
10.3866/PKU.WHXB20111107
-
The molecular dynamics behaviors in water solutions are determined by the hydrogen bond (H-bond) relaxations. The H-bond lifetime, as an important experimental and theoretical parameter, is often used to explore the general kinetics of H-bond dynamics. In this work, four different H-bond lifetimes were defined and calculated in dimethyl sulfoxide (DMSO)-water mixtures with two widely-used combined force fields, SPC/E-P2 and SPC/E-OPLS. The continuous and kinetic based H-bond lifetimes, τC and τR, are always shorter than the τPR of stable states due to neglecting of unsuccessful H-bond exchanges. The intermittent H-bond lifetime τI was found to be the longest because of a recount of the reforming events after the successful switching event. The H-bond lifetimes, τC, τI, τR, and τPR increase with the mole fraction of DMSO (xD). This trend is not consistent with that of the molecular diffuse constants. This shows that the molecular mobility is not a decisive factor to the H-bond lifetime. The environment-dependent H-bond lifetimes suggest that the stronger H-bonds should not always remain longer time. The H-bond coordination numbers of water and DMSO decrease with xD. The distortion and elongation probability of the H-bond that was induced by surrounding molecules decreases and, therefore, so the τC and τR approach each other at the limiting concentrations in this work. The facts above show that the labeled H-bond lifetime is closely related to the H-bond density around it. One H-bond switching event only takes place on one new available acceptor there. The localized character of H-bond relaxation is consistent with the trend of the molecular mobility trend. The H-bond lifetimes also rely on the theoretical model used in the simulations.
-
-
-
[1]
(1) Bagchi, B. Chem. Rev. 2005, 105, 3197
-
[2]
(2) Bakker, H. J.; Skinner, J. L. Chem. Rev. 2010, 110, 1498.
-
[3]
(3) Rezus, Y. L. A.; Bakker, H. J. J. Chem. Phys. 2005, 123, 114502.
-
[4]
(4) Eaves, J. D.; Loparo, J. J.; Fecko, C. J.; Roberts, S. T.; Tokmakoff, A.; Geissler, P. L. PNAS 2005, 102, 13019.
-
[5]
(5) Fayer, M. D. Ann. Rev. P. Chem. 2008, 60, 21.
-
[6]
(6) Fayer, M. D.; Levinger, N. E. Ann. Rev. Anal. Chem. 2010, 3, 89.
-
[7]
(7) Luzar, A.; Chandler, D. Nature 1996, 379, 55.
-
[8]
(8) Tay, K. A.; Bresme, F. Phys. Chem. Chem. Phys. 2009, 11, 409.
-
[9]
(9) Sciortino, F.; Geiger, A.; Stanley, H. E. Nature 1991, 354, 218.
-
[10]
(10) Csajka, F.; Chandler, D. J. Chem. Phys. 1998, 109, 1125.
-
[11]
(11) Luzar, A. Faraday Discussions 1996, 103, 29.
- [12]
-
[13]
(13) Berkelbach, T. C.; Lee, H. S.; Tuckerman, M. E. Phys. Rev. Lett. 2009, 103, 238302.
-
[14]
(14) Zasetsky, A. Y.; Petelina, S. V.; Lyashchenko, A. K.; Lileev, A. S. J. Chem. Phys. 2010, 133, 134502.
-
[15]
(15) Stirnemann, G.; Sterpone, F.; Laage, D. J. Phys. Chem B 2011, 115, 3254,
-
[16]
(16) Levinger, N. E.; Fayer, M. D. J. Am. Chem. Soc. 2009, 131, 5530.
-
[17]
(17) Tielrooij, K. J.; Hunger, J.; Buchner, R.; Bonn, M.; Bakker, H. J. J. Am. Chem. Soc. 2010, 132, 15671.
-
[18]
(18) Laage, D.; Stirnemann, G.; Hynes, J. T. J. Phys. Chem. B 2009, 113, 2428.
-
[19]
(19) Chowdhary, J.; Ladanyi, B. M. J. Phys .Chem. B 2009, 113, 4045.
-
[20]
(20) Laage, D.; Hynes, J. T. Chem. Phys. Lett. 2006, 433, 80.
-
[21]
(21) (a) Soper, A. K.; Luzar, A. J. Chem. Phys. 1992, 97, 1320 (b) Luzar, A.; Soper, A. K.; Chandler, D. J. Chem. Phys. 1993, 99, 6836 (c) Soper, A. K.; Luzar, A. J. Chem. Phys. 1996, 100, 1357.
-
[22]
(22) Kirchner, B.; Hutter, J. Chem. Phys. Lett. 2002, 364, 497.
-
[23]
(23) (a) Borin, I. A.; Skaf, M. S. J. Chem. Phys. 1999, 110, 6412 (b) Skaf, M. S. J. Chem. Phys. 1997, 107, 7996.
-
[24]
(24) Zhang, Q.; Zhang, X. J. Mol. Liq. 2009, 145, 67.
-
[25]
(25) Lu, Z.; Manias, E.; MacDonald, D. D.; Lanagan, M. J. Phys. Chem. A 2009, 113, 12207.
-
[26]
(26) Laage D.; Hynes, J. T. J. Phys. Chem B 2008, 112, 7697.
-
[27]
(27) Zheng, Y. J.; Ornstein, R. L. J. Am. Chem. Soc. 1996, 118, 4175.
-
[28]
(28) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
-
[29]
(29) Steinbach, P. J.; Brooks, B. R. J. Comput. Chem. 1994, 15, 667.
-
[30]
(30) Rey, R.; Ingrosso, F.; Elsaesser, T.; Hynes, J. T. J. Phys. Chem. A 2009, 113, 8949.
-
[1]
-
-
-
[1]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[2]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[3]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[11]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
-
[20]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[1]
Metrics
- PDF Downloads(1260)
- Abstract views(3802)
- HTML views(165)