Citation: WANG Song, MAO Dong-Sen, GUO Xiao-Ming, LU Guan-Zhong. Dimethyl Ether Synthesis from CO2 Hydrogenation over CuO-TiO2-ZrO2/HZSM-5 Catalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2651-2658. doi: 10.3866/PKU.WHXB20111018
-
A series of CuO-TiO2-ZrO2 mixed oxides with different CuO mass fractions (50%-80%) were prepared by co-precipitation and characterized by X-ray diffraction (XRD), N2 physisorption, temperatureprogrammed reduction of hydrogen (H2-TPR), temperature-programmed desorption of carbon dioxide (CO2-TPD) and hydrogen (H2-TPD), and reactive N2O adsorption techniques. The prepared CuO-TiO2-ZrO2 samples were mixed physically with HZSM-5 zeolite to synthesize dimethyl ether (DME) from CO2 hydrogenation in a fixed bed reactor at 250°C, 3.0 MPa, gas hourly space velocity (GHSV) of 1500 mL·g-1· h-1, and volume ratio of 2.8 for H2 to CO2. We found that the conversion of CO2 increased with an increase in CuO content, reached a maximum at a CuO content of 70% and then decreased. The selectivity of DME increased with an increase in CuO content initially and remained essentially constant when the CuO content was ≥70%. Thus, the yield of DME reached a maximum of 13.2% at 70% CuO content. The productivity of the oxygenated compounds (including methanol and DME) on the CuO-TiO2-ZrO2/HZSM-5 catalysts is closely related to the metallic copper surface area.
-
-
[1]
(1) Mao, D. S.;Wang, S.; Lu, G. Z. Petrochem. Technol. 2007, 36, 1172.
-
[2]
[毛东森, 王嵩, 卢冠忠. 石油化工, 2007, 36, 1172.]
-
[3]
(2) Jin, Z. L.; Qian, L.; Lü, G. X. Progress Chem. 2010, 22, 1102.
-
[4]
[靳治良, 钱玲, 吕功煊. 化学进展, 2010, 22,1102.]
-
[5]
(3) Naik, S. P.; Bui, V.; Ryu, T.; Miller, J.D.; Zmierczak,W. Appl. Catal. A-Gen. 2010, 381, 183,
-
[6]
(4) Zhao, Y. Q.; Chen, J. X.; Zhang, J. Y. Chem. React. Eng. Technol. 2007, 23, 456.
-
[7]
[赵彦巧, 陈吉祥, 张继炎. 化学反应工程与工艺, 2007, 23, 456.]
-
[8]
(5) Zhao, Y. Q.; Chen, J. X.; Zhang, J. X.; Zhang, J. Y. J. Fuel Chem. Technol. 2005, 33, 334.
-
[9]
[赵彦巧, 陈吉祥, 张建祥, 张继炎. 燃料化学学报. 2005, 33, 334.]
-
[10]
(6) Arena, F.; Barbera, K.; Italiano,G.; Bonura,G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185.
-
[11]
(7) Arena, F.; Italiano, G.; Barbera, K.; Bonura, G.; Spadaro, L.; Frusteri, F. Catal. Today 2009, 143, 80.
-
[12]
(8) Liu, X. M.; Yan, Z. F.; Lu, G. Q. Chin. Sci. Bull. 2004, 49, 522.
-
[13]
[刘欣梅, 阎子峰, 逯高清. 科学通报, 2004, 49, 522.]
-
[14]
(9) Liu, X. M.; Lu, G. Q.; Yan, Z. F. Appl. Catal. A- Gen. 2005, 279, 24.
-
[15]
(10) Zhao, Y. P.; Tian, J. Z.; Jin, T. J. Qiqihar Univ. 2006, 22, 1.
-
[16]
[赵云鹏, 田景芝, 荆涛. 齐齐哈尔大学学报. 2006, 22, 1.]
-
[17]
(11) S?oczyński, J.; Grabowski, R.; Olszewski, P.; Koz?owska, A.; Stoch, J.; Lachowska, M.; Skrzypek, J. Appl. Catal. A- Gen. 2006, 310, 127.
-
[18]
(12) Guo, X. M.; Mao, D. S.;Wang, S.;Wu, G. S.; Lu, G. Z. Catal. Commun. 2009, 10, 166.1
-
[19]
(13) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S.;Wu, G. S. J. Catal. 2010, 271, 178.
-
[20]
(14) Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Zhang, C.W. J. Nat. Gas Chem. 1999, 8, 280.
-
[21]
(15) Wang, J. Y.; Zeng, C. Y. Petro. Process. Petrochem. 2004, 35, 13.
-
[22]
[王继元, 曾崇余. 石油炼制与化工, 2004, 35, 13.]
-
[23]
(16) Arena, F.; Spadaro, L.; Di Blasi, O.; Bonura, G.; Frusteri, F. Stud. Surf. Sci. Catal. 2004, 147, 385.
-
[24]
(17) Chen, G. M.;Wang, H.; Gao,W. G.; Zhang, J.;Wei, G. Mater. Rev. 2010, 24, 104.
-
[25]
[陈高明, 王华, 高文桂, 张健, 魏刚. 材料导报, 2010, 24, 104.]
-
[26]
(18) Mao, D. S.; Chen, Q. L.; Lu, G. Z. Appl. Catal. A- Gen. 2003, 244, 273.
-
[27]
(19) Mao, D. S.; Lu, G. Z.; Chen, Q. L. Chin. J. Catal. 2004, 24, 501.
-
[28]
[毛东森, 卢冠忠, 陈庆龄. 催化学报, 2004, 24, 501.]
-
[29]
(20) Wang, S.; Mao, D. S.; Guo, X. M.; Lu, G. Z. Catal. Commun. 2009, 10, 1367.
-
[30]
(21) Fujiwara, M.; Ando, H.; Tanaka, M.; Souma, Y. Bull. Chem. Soc. Jpn. 1994, 67, 546.
-
[31]
(22) Sun, Q.; Zhang, Y. L.; Chen, Y.; Deng, J. F.;Wu, D.; Chen, S. Y. J. Catal. 1997, 167, 92.
-
[32]
(23) Dubois, J. L.; Sayama, K.; Arakawa, H. Chem. Lett. 1992, 21, 1115.
-
[33]
(24) Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Li, S. B. J. Mol. Catal. (China) 1997, 11, 297.
-
[34]
[葛庆杰, 黄友梅, 邱凤炎, 李树本. 分子催化, 1997, 11, 297.]
-
[35]
(25) Li, Z. X.; Feng, Y. L.;Wang, R. J.; Zhang, J. Y.;Wang, Y. J.; Han, S. Chin. J . Catal. 1998, 19, 367
-
[36]
[李增喜, 冯玉龙, 王日杰, 张继炎, 王延吉, 韩森. 催化学报, 1998, 19, 367.]
-
[37]
(26) Deng, S. Y.; Chu,W.; Xu, H. Y.; Shi, L. M.; Huang, L. H. J. Nat. Gas Chem. 2008, 17, 369.
-
[38]
(27) Chary, K. V. R.; Sagar, G. V.; Naresh, D.; Seela, K. K.; Sridhar, B. J. Phys. Chem. B, 2005, 109, 9437.
-
[39]
(28) Ding, G. H.; Jiang, X. Y.;Wang, Y. J.; Zheng, X. M. Chin. J. Inorg. Chem. 2004, 20, 805.
-
[40]
[丁光辉, 蒋晓原, 王月娟, 郑小明. 无机化学学报. 2004, 20, 805.]
-
[41]
(29) Batyrev, E. D.; van den Heuvel, J. C.; Beckers, J.; Jansen,W.P. A.; Castricum, H.L. J. Catal. 2005, 229, 136.
-
[42]
(30) S?oczyński, J.; Grabowski, R.; Koz?owska, A.; Olszewski, P. K.; Stoch, J. Phys. Chem. Chem. Phys. 2003, 5, 463.1.
-
[43]
(31) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys .-Chim. Sin. 2010, 26, 3278.
-
[44]
[杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278.]
-
[45]
(32) Yang, Z. Q.; Mao, D. S.;Wu, R. C.; Yu, J.;Wang, Q. Acta Phys . -Chim. Sin. 2011, 27, 1163.
-
[46]
[杨志强, 毛东森, 吴仁春, 俞俊, 王倩. 物理化学学报, 2011, 27, 1163.]
-
[47]
(33) Bando, K. K.; Sayama, K.; Kusama, H.; Okabe, K.; Arakawa, H. Appl. Catal. A- Gen. 1997, 165, 391.
-
[48]
(34) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A- Gen. 2008, 350, 16.
-
[49]
(35) Lin, M. G.; Yang, C.;Wu, G. S.;Wei,W.; Li,W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591.
-
[50]
[林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙罕宇, 何鸣元. 催化学报, 2004, 25, 591.]
-
[51]
(36) Bianchi, D.; Gass, J.L.; Khalfallah, M. S.; Teichner, J. Appl. Catal. A- Gen. 1993, 101, 297
- [52]
-
[53]
(38) Nitta, Y.; Fujimatsu, T.; Okamoto, Y.; Imanaka, T. Catal. Lett. 1993, 17, 157.
-
[54]
(39) Nitta, Y.; Suwata, O.; Ikeda, Y.; Okamoto, Y.; Imanaka. T. Catal. Lett. 1994, 26, 345.
-
[55]
(40) Koeppel, R. A.; Baiker, A.;Wokaun, A. Appl. Catal. A- Gen. 1992, 84, 77.
-
[56]
(41) Nomura, N.; Tagawa, T.; to, S. React. Kinet. Catal. Lett. 1998, 63, 21.
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[4]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[5]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[6]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[7]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[8]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[14]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[15]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[16]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[17]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[18]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[19]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[20]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[1]
Metrics
- PDF Downloads(1037)
- Abstract views(2284)
- HTML views(2)