Citation: WANG Song, MAO Dong-Sen, GUO Xiao-Ming, LU Guan-Zhong. Dimethyl Ether Synthesis from CO2 Hydrogenation over CuO-TiO2-ZrO2/HZSM-5 Catalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2651-2658. doi: 10.3866/PKU.WHXB20111018 shu

Dimethyl Ether Synthesis from CO2 Hydrogenation over CuO-TiO2-ZrO2/HZSM-5 Catalysts

  • Received Date: 9 May 2011
    Available Online: 19 August 2011

    Fund Project: 上海市科委(08520513600) (08520513600) 上海市教委重点学科(J51503) (J51503)上海市优秀青年教师专项基金(yyy10078)资助项目 (yyy10078)

  • A series of CuO-TiO2-ZrO2 mixed oxides with different CuO mass fractions (50%-80%) were prepared by co-precipitation and characterized by X-ray diffraction (XRD), N2 physisorption, temperatureprogrammed reduction of hydrogen (H2-TPR), temperature-programmed desorption of carbon dioxide (CO2-TPD) and hydrogen (H2-TPD), and reactive N2O adsorption techniques. The prepared CuO-TiO2-ZrO2 samples were mixed physically with HZSM-5 zeolite to synthesize dimethyl ether (DME) from CO2 hydrogenation in a fixed bed reactor at 250°C, 3.0 MPa, gas hourly space velocity (GHSV) of 1500 mL·g-1· h-1, and volume ratio of 2.8 for H2 to CO2. We found that the conversion of CO2 increased with an increase in CuO content, reached a maximum at a CuO content of 70% and then decreased. The selectivity of DME increased with an increase in CuO content initially and remained essentially constant when the CuO content was ≥70%. Thus, the yield of DME reached a maximum of 13.2% at 70% CuO content. The productivity of the oxygenated compounds (including methanol and DME) on the CuO-TiO2-ZrO2/HZSM-5 catalysts is closely related to the metallic copper surface area.
  • 加载中
    1. [1]

      (1) Mao, D. S.;Wang, S.; Lu, G. Z. Petrochem. Technol. 2007, 36, 1172.

    2. [2]

      [毛东森, 王嵩, 卢冠忠. 石油化工, 2007, 36, 1172.]

    3. [3]

      (2) Jin, Z. L.; Qian, L.; Lü, G. X. Progress Chem. 2010, 22, 1102.

    4. [4]

      [靳治良, 钱玲, 吕功煊. 化学进展, 2010, 22,1102.]

    5. [5]

      (3) Naik, S. P.; Bui, V.; Ryu, T.; Miller, J.D.; Zmierczak,W. Appl. Catal. A-Gen. 2010, 381, 183,

    6. [6]

      (4) Zhao, Y. Q.; Chen, J. X.; Zhang, J. Y. Chem. React. Eng. Technol. 2007, 23, 456.

    7. [7]

      [赵彦巧, 陈吉祥, 张继炎. 化学反应工程与工艺, 2007, 23, 456.]

    8. [8]

      (5) Zhao, Y. Q.; Chen, J. X.; Zhang, J. X.; Zhang, J. Y. J. Fuel Chem. Technol. 2005, 33, 334.

    9. [9]

      [赵彦巧, 陈吉祥, 张建祥, 张继炎. 燃料化学学报. 2005, 33, 334.]

    10. [10]

      (6) Arena, F.; Barbera, K.; Italiano,G.; Bonura,G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185.  

    11. [11]

      (7) Arena, F.; Italiano, G.; Barbera, K.; Bonura, G.; Spadaro, L.; Frusteri, F. Catal. Today 2009, 143, 80.  

    12. [12]

      (8) Liu, X. M.; Yan, Z. F.; Lu, G. Q. Chin. Sci. Bull. 2004, 49, 522.

    13. [13]

      [刘欣梅, 阎子峰, 逯高清. 科学通报, 2004, 49, 522.]

    14. [14]

      (9) Liu, X. M.; Lu, G. Q.; Yan, Z. F. Appl. Catal. A- Gen. 2005, 279, 24.

    15. [15]

      (10) Zhao, Y. P.; Tian, J. Z.; Jin, T. J. Qiqihar Univ. 2006, 22, 1.

    16. [16]

      [赵云鹏, 田景芝, 荆涛. 齐齐哈尔大学学报. 2006, 22, 1.]

    17. [17]

      (11) S?oczyński, J.; Grabowski, R.; Olszewski, P.; Koz?owska, A.; Stoch, J.; Lachowska, M.; Skrzypek, J. Appl. Catal. A- Gen. 2006, 310, 127.  

    18. [18]

      (12) Guo, X. M.; Mao, D. S.;Wang, S.;Wu, G. S.; Lu, G. Z. Catal. Commun. 2009, 10, 166.1

    19. [19]

      (13) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S.;Wu, G. S. J. Catal. 2010, 271, 178.  

    20. [20]

      (14) Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Zhang, C.W. J. Nat. Gas Chem. 1999, 8, 280.

    21. [21]

      (15) Wang, J. Y.; Zeng, C. Y. Petro. Process. Petrochem. 2004, 35, 13.

    22. [22]

      [王继元, 曾崇余. 石油炼制与化工, 2004, 35, 13.]

    23. [23]

      (16) Arena, F.; Spadaro, L.; Di Blasi, O.; Bonura, G.; Frusteri, F. Stud. Surf. Sci. Catal. 2004, 147, 385.  

    24. [24]

      (17) Chen, G. M.;Wang, H.; Gao,W. G.; Zhang, J.;Wei, G. Mater. Rev. 2010, 24, 104.

    25. [25]

      [陈高明, 王华, 高文桂, 张健, 魏刚. 材料导报, 2010, 24, 104.]

    26. [26]

      (18) Mao, D. S.; Chen, Q. L.; Lu, G. Z. Appl. Catal. A- Gen. 2003, 244, 273.  

    27. [27]

      (19) Mao, D. S.; Lu, G. Z.; Chen, Q. L. Chin. J. Catal. 2004, 24, 501.

    28. [28]

      [毛东森, 卢冠忠, 陈庆龄. 催化学报, 2004, 24, 501.]

    29. [29]

      (20) Wang, S.; Mao, D. S.; Guo, X. M.; Lu, G. Z. Catal. Commun. 2009, 10, 1367.  

    30. [30]

      (21) Fujiwara, M.; Ando, H.; Tanaka, M.; Souma, Y. Bull. Chem. Soc. Jpn. 1994, 67, 546.  

    31. [31]

      (22) Sun, Q.; Zhang, Y. L.; Chen, Y.; Deng, J. F.;Wu, D.; Chen, S. Y. J. Catal. 1997, 167, 92.  

    32. [32]

      (23) Dubois, J. L.; Sayama, K.; Arakawa, H. Chem. Lett. 1992, 21, 1115.

    33. [33]

      (24) Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Li, S. B. J. Mol. Catal. (China) 1997, 11, 297.

    34. [34]

      [葛庆杰, 黄友梅, 邱凤炎, 李树本. 分子催化, 1997, 11, 297.]

    35. [35]

      (25) Li, Z. X.; Feng, Y. L.;Wang, R. J.; Zhang, J. Y.;Wang, Y. J.; Han, S. Chin. J . Catal. 1998, 19, 367

    36. [36]

      [李增喜, 冯玉龙, 王日杰, 张继炎, 王延吉, 韩森. 催化学报, 1998, 19, 367.]

    37. [37]

      (26) Deng, S. Y.; Chu,W.; Xu, H. Y.; Shi, L. M.; Huang, L. H. J. Nat. Gas Chem. 2008, 17, 369.  

    38. [38]

      (27) Chary, K. V. R.; Sagar, G. V.; Naresh, D.; Seela, K. K.; Sridhar, B. J. Phys. Chem. B, 2005, 109, 9437.  

    39. [39]

      (28) Ding, G. H.; Jiang, X. Y.;Wang, Y. J.; Zheng, X. M. Chin. J. Inorg. Chem. 2004, 20, 805.

    40. [40]

      [丁光辉, 蒋晓原, 王月娟, 郑小明. 无机化学学报. 2004, 20, 805.]

    41. [41]

      (29) Batyrev, E. D.; van den Heuvel, J. C.; Beckers, J.; Jansen,W.P. A.; Castricum, H.L. J. Catal. 2005, 229, 136.  

    42. [42]

      (30) S?oczyński, J.; Grabowski, R.; Koz?owska, A.; Olszewski, P. K.; Stoch, J. Phys. Chem. Chem. Phys. 2003, 5, 463.1.

    43. [43]

      (31) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys .-Chim. Sin. 2010, 26, 3278.

    44. [44]

      [杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278.]

    45. [45]

      (32) Yang, Z. Q.; Mao, D. S.;Wu, R. C.; Yu, J.;Wang, Q. Acta Phys . -Chim. Sin. 2011, 27, 1163.

    46. [46]

      [杨志强, 毛东森, 吴仁春, 俞俊, 王倩. 物理化学学报, 2011, 27, 1163.]

    47. [47]

      (33) Bando, K. K.; Sayama, K.; Kusama, H.; Okabe, K.; Arakawa, H. Appl. Catal. A- Gen. 1997, 165, 391.  

    48. [48]

      (34) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Appl. Catal. A- Gen. 2008, 350, 16.  

    49. [49]

      (35) Lin, M. G.; Yang, C.;Wu, G. S.;Wei,W.; Li,W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591.

    50. [50]

      [林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙罕宇, 何鸣元. 催化学报, 2004, 25, 591.]

    51. [51]

      (36) Bianchi, D.; Gass, J.L.; Khalfallah, M. S.; Teichner, J. Appl. Catal. A- Gen. 1993, 101, 297

    52. [52]

      (37) Fisher, I. A.; Bell, A.T. J. Catal. 1997, 172, 222.  

    53. [53]

      (38) Nitta, Y.; Fujimatsu, T.; Okamoto, Y.; Imanaka, T. Catal. Lett. 1993, 17, 157.  

    54. [54]

      (39) Nitta, Y.; Suwata, O.; Ikeda, Y.; Okamoto, Y.; Imanaka. T. Catal. Lett. 1994, 26, 345.  

    55. [55]

      (40) Koeppel, R. A.; Baiker, A.;Wokaun, A. Appl. Catal. A- Gen. 1992, 84, 77.  

    56. [56]

      (41) Nomura, N.; Tagawa, T.; to, S. React. Kinet. Catal. Lett. 1998, 63, 21.  

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(1037)
  • Abstract views(2284)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return