Citation: ZHANG Fu-Chun, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong. Electronic Structure and Magnetism of Ni-Doped ZnO Nanowires[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2326-2332. doi: 10.3866/PKU.WHXB20111016 shu

Electronic Structure and Magnetism of Ni-Doped ZnO Nanowires

  • Received Date: 30 May 2011
    Available Online: 18 August 2011

    Fund Project: 国家自然科学基金(60976069) (60976069) 陕西省自然科学基金(2010JM8020) (2010JM8020) 陕西省教育厅专项科研基金(2010JK923, 11JK0846) (2010JK923, 11JK0846)延安大学博士科研启动基金(YD2009-01)资助项目 (YD2009-01)

  • Based on spin-polarized density functional theory we studied the electronic structures, magnetic and optical properties of Ni-doped ZnO nanowires. The magnetic results show that three magnetic coupling states are present: ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic (PM) states for the six kinds of Ni-doped configurations. The calculated energy results indicate that antiferromagnetic coupling is more stable when Ni atoms substitute for Zn atoms in the ZnO nanowires on the outside surface along the [0001] direction. AFM coupling has a metallic nature. The FM results from the density of states show that the spin polarization phenomenon appears near the Fermi level and causes strong hybridization between Ni 3d and O 2p. Moreover, the magnetic moments mainly originate from the unpaired electrons of the Ni 3d orbitals and the electrons of the O 2p orbitals contribute a little to the magnetic moments. The coupling of FM has a half-metal nature. In addition, the optical properties indicate that the absorption peaks show a significant red shift and od emission in the far UV band while a blue shift is apparent for the near UV band (380 nm). These results indicate that the Ni-doped ZnO nanowires are promising magneto-optical electronic materials and they can be used for nanoscale spintronics device materials.
  • 加载中
    1. [1]

      (1) Ohno, H. Science 1998, 291, 951.

    2. [2]

      (2) Pan, Z.W.; Dai, Z, R.; Wang, Z. L. Science 2001, 281, 1947.

    3. [3]

      (3) Jian,W. B.; Wu, Z. Y.; Huang, R. T.; Chiang, S. J.; Lan, M. D.; Lin, J. J. Phys. Rev. B 2006, 73, 233308.   

    4. [4]

      (4) Sluiter, M. H. F.; Kawazoe, Y.; Sharma, P.; Inoue, A.; Raju,A.R.; Rout, C.; Waghmare, U. V. Phys. Rev. Lett. 2005, 94, 187204.   

    5. [5]

      (5) Kulkarni, J. S.; Kazakova, O.; Holmes, J. D. Appl. Phys. A:Mater. Sci. Pro. 2006, 85, 277.   

    6. [6]

      (6) Chang, Y. Q.; Wang, D. B.; Luo, X. H.; Xu, X. Y.; Chen, X. H.; Li, L.; Chen, C. P.; Wang, R. M.; Xu, J.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 4020.

    7. [7]

      (7) Chou, S. Y.; Krauss, P. R.; Zhang,W. J. Vac. Sci. Technol. B1997, 15, 2897.   

    8. [8]

      (8) Jun, Y.; Jung, Y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615.   

    9. [9]

      (9) Li, Y. F.; Zhou, Z.; Chen, Y. S.; Chen, Z. F. J. Chem. Phys. 2009, 130, 204706.   

    10. [10]

      (10) Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D.Science 2000, 287, 1019.   

    11. [11]

      (11) Sluiter, M. H. F.; Kawazoe, Y.; Sharma, P.; Inoue, A.; Raju, A.R.; Rout, C.; Waghmare, U. V. Phys. Rev. Lett. 2005, 94,187204.   

    12. [12]

      (12) Zhou, Z.; Li, Y. F.; Liu, L.; Chen, Y. S.; Zhang, S. B.; Chen, Z.F. J. Phys. Chem. C 2008, 112, 13926.   

    13. [13]

      (13) Li, Y. F.; Zhou, Z.; Jin, P.; Chen, Y. S.; Zhang, S. B.; Chen, Z. F.J. Phys. Chem. C 2010, 114, 12099.   

    14. [14]

      (14) Liu, X. X.; Lin, F. T.; Sun, L. L.; Cheng,W. J.; Ma, X. M.; Shi,W. Z. Appl. Phys. Lett. 2006, 88, 062508.   

    15. [15]

      (15) Cui, J. B.; Gibson, U. J. Appl. Phys. Lett. 2005, 87, 133108.   

    16. [16]

      (16) He, J. H.; Lao, C. S.; Chen, L. J.; Davidovic, D.; Wang, Z. L.J. Am. Chem. Soc. 2005, 127, 16376.   

    17. [17]

      (17) Wakano, T.; Fujimura, N.; Morinaga, Y.; Abe, N.; Ito, T. Physica E 2001, 10, 260.

    18. [18]

      (18) Al-Harbi, T. Journal of Alloys and Compounds 2011, 509, 387.   

    19. [19]

      (19) Cheng, C.W.; Xu, G. Y.; Zhang, H. Q.; Luo, Y. Mater. Lett.2008, 62, 1617.   

    20. [20]

      (20) Yin, Z.; Chen, N.; Yang, F.; Song, S.; Chai, C.; Zhong, J.; Qian,H.; Ibrahim, K. Solid State Commun. 2005, 135, 430.   

    21. [21]

      (21) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert,M. I. J.; Refson, K.; Payne, M. C. Zeitschrift fuer Kristallographie 2005, 220, 567.

    22. [22]

      (22) Wang, Y.; Perdew, J. P. Phys. Rev. B 1991, 44, 013298.   

    23. [23]

      (23) Sapra, A.; Sarma, D. D. Phys. Rev. B 2004, 69, 25304.

    24. [24]

      (24) Ermoshin, V. A.; Veryazov, V. A. Phys. Stat. Sol. 1995, B189,K49.

    25. [25]

      (25) Usuda, M.; Hamada, N. Phys. Rev. B 2002, 66, 125101.   

    26. [26]

      (26) Wander, A.; Harrison, N. M. Surf. Sci. Lett. 2000, 23, L342.

    27. [27]

      (27) Zhang, Z. H.; Qi, X. Y.; Jian, J. K.; Duan, X. F. Micron 2006, 37, 229.   

    28. [28]

      (28) Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang,W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407.

    29. [29]

      (29) Chen, T.; Xing, G. Z.; Zhang, Z.; Chen, H. Y.; Wu, T.Nanotechnology 2008, 19, 435711.   

    30. [30]

      (30) Twardowski, A.; Dietl, T.; Demianiuk, M. Solid State Commun.1983, 48, 845.   

    31. [31]

      (31) Kolodziejski, L. A.; Gunshor, R. L.; Venkatasubramanian, R.; Bonsett, T. C.; Frohne, R.; Datta, S.; Bylsma, R. B.; Becker,W.M.; Nurmikko, A. V. J. Vac. Sci. Technol. B 1986, 4, 583.

    32. [32]

      (32) Lee, Y. R.; Ramdas, A. K.; Aggarwal, R. L. Phys. Rev. B 1988, 38, 10600.   

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(1578)
  • Abstract views(3102)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return