Citation: RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun. Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2373-2378. doi: 10.3866/PKU.WHXB20111008
-
Pt hollow nanospheres with a particle diameter of 110 nm and a shell thickness of about 5 nm were synthesized in bulk using selenium colloids with a particle diameter of 100 nm as a template. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy dispersive X-ray spectrocopy (EDX), and scanning electron microscopy (SEM) were used to determine their morphologies and structures. The electrocatalytic activity of the Pt hollow nanospheres modifying glassy carbon electrode toward methanol oxidation was measured by using methanol as the probe molecule. We show that the multiporous Pt hollow nanospheres composited of atomic clusters have a uniform particle size, od dispersity, a stable structure, a big surface area and od mass transfer performance. Cyclic voltammetry (CV) showed that when the current density of methanol oxidation was 0.10 mA·cm-2 and upon positive scanning the methanol oxidation potential of the Pt hollow nanospheres was around 110 and 64 mV negative than that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 51 and 13 mV negative than that of the latter two species, respectively. After 800 segments cyclic voltammetry scanning, upon positive scanning the peak current density of methanol oxidation on the Pt hollow nanospheres was found to be 13 and 15 times as high as that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 19 and 38 times as high as that of the two latter species. Our experimental results show that the Pt hollow nanospheres have od electrocatalytic activity and stability toward methanol oxidation.
-
-
[1]
(1) Kuver, A.;Wielstih,W. J. Power Sources 1998, 74, 211.
-
[2]
(2) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.
-
[3]
(3) Hogarth, M. P.; Ralph, T. R. Platinum Metals Rev. 2002, 46, 146.
-
[4]
(4) Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; ttesfeld, S. J. Power Sources 2000, 86, 111.
-
[5]
(5) Witham, C. K.; Chun,W.; Valdez, T. I.; Narayanan, S. R. Electrochem. Solid State Lett. 2000, 3, 497.
-
[6]
(6) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.
-
[7]
(7) Cruickshank, J.; Scott, K. J. Power Source 1998, 70, 40.
-
[8]
(8) Gurau, B.; Smotkin, E. S. J. Power Sources 2002, 112, 339.
-
[9]
(9) Kauranen, P. S.; Skou, E. J. Electroanal. Chem. 1996, 408, 189.
-
[10]
(10) Miyake, M.;Wainright, J. S.; Savinell, R. R. J. Electrochem. Soc. 2001, 148, A905.
-
[11]
(11) Hobson, L. J.; Nakano, Y.; Ozq, H.; Hayase, S. J. Power Sources 2002, 104, 79.
-
[12]
(12) Mikhaylova, A. A.; Khazova, O. A. J. Electroanal. Chem. 2000, 225, 480.
- [13]
- [14]
-
[15]
(15) Schmid, G. Clusters anc Colloids: From Theory to Application; VCH:Weinheim, 1994.
-
[16]
(16) Yu, A.; Liang, Z. J.; Cho, J. H.; Caruso, F. Nano Lett. 2003, 3, 1203.
-
[17]
(17) Stamm, K. L.; Garno, J. C.; Liu, G. Y.; Brock, S. L. J. Am. Chem. Soc. 2003, 125, 4036.
- [18]
- [19]
-
[20]
(20) Hu, J. T.; Odom, T.W.; Lieber, C. M. Accounts Chem. Res. 1999, 32, 435.
- [21]
-
[22]
(22) Hu, J. Q.; Zhang, Y.; Liu, B.; Liu, J. X.; Zhou, H. H.; Xu, Y. F.; Jiang, Y. X.; Yang, Z. L.; Tian, Z. Q. J. Am. Chem. Soc. 2004, 126, 9470.
-
[23]
(23) Teng, X.W.; Black, D.;Watkins, N. J.; Gao, Y. L.; Yang, H. Nano Lett. 2003, 3, 261.
-
[24]
(24) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.
-
[25]
(25) Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Langmuir 2005, 21, 7449.
-
[26]
(26) Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364.
-
[27]
(27) Guo, S. J.; Dong, S. J.;Wang, E. K. J. Phys Chem. C 2009, 113, 5485.
-
[28]
(28) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
- [29]
-
[30]
(30) Caruso, F. O. Chem. Eur. J. 2000, 6 (3), 413; Adv. Mater. 2001, 13 (1), 11.
-
[31]
(31) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540.
-
[32]
(32) Chem, Z.W.;Waje, M.; Li,W. Z.; Yan, Y. S. Angew. Chem. 2007, 119, 4138.
-
[33]
(33) Iida, M.; Sasaki, T.;Watanabe, M. Chem. Mater. 1998, 10, 3780.
-
[34]
(34) Liu, J. G.;Wilcox, D. L. J. Mater. Res. 1994, 10,84.
- [35]
-
[36]
(36) Fowler, C. E.; Khushalani, D. D.; Mann, S. Chem. Commun. 2001, 19, 2028.
-
[37]
(37) Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.
-
[38]
(38) Xu, H. L.;Wang,W. Z. Angew. Chem. Int. Edit. 2007, 46, 1.
- [39]
- [40]
-
[41]
(41) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12, 531.
-
[42]
(42) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
- [43]
-
[44]
(44) Zhang, J. H.; Zhan, P.; Liu, H. Y.;Wang, Z. L.; Ming, N. B. Mater. Lett. 2006, 60, 280.
-
[45]
(45) Sun, Y.; Mayers, B.T.; Xia, Y. Nano Lett. 2002, 2, 481.
-
[46]
(46) Teranishi, H.; Hosoe, M.; Miyake, M. Adv. Mater. 1997, 9, 65.
-
[47]
(47) Xia, Y.; Gates, B.; Yin, Y.; Lu. Y. Adv. Mater. 2000, 12, 693.
-
[48]
(48) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26 (9), 2337.
-
[49]
[颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.]
-
[50]
(49) Trasatti, S.; Petrii,O. A. Pure Appl. Chem. 1991, 63, 711.
-
[51]
(50) Sun, S. G.; Chen, A. C.; Huang, T. S.; Li, J. B.; Tian, Z.W. J. Electroanal. Chem.1992, 213, 340.
-
[1]
-
-
[1]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[2]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[3]
Qiuping Liu , Yongxian Fan , Wenxian Chen , Mengdi Wang , Mei Mei , Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[6]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[7]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[10]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[11]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[12]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[13]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[16]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[17]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[20]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[1]
Metrics
- PDF Downloads(1642)
- Abstract views(3022)
- HTML views(20)