Citation: SUN Jian, SUN Xiu-Xin, SUN Shi-Ling, QIU Yong-Qing, LI Chuan-Bi. Second-Order Nonlinear Optical Property for Transition Metal Complexes with Bis(imino)pyridine[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2297-2302. doi: 10.3866/PKU.WHXB20110938 shu

Second-Order Nonlinear Optical Property for Transition Metal Complexes with Bis(imino)pyridine

  • Received Date: 14 June 2011
    Available Online: 8 August 2011

    Fund Project: 国家自然科学基金(20873017) (20873017)吉林省自然科学基金(20101154)资助项目 (20101154)

  • The geometrical structures, electronic spectra, and second-order nonlinear optical (NLO) properties of eight bis(imino)pyridine complexes were calculated and analyzed using density functional theory (DFT) B3LYP method. The results indicate that both the ancillary ligands and the central metal ions affect the polarizabilities of the complexes slightly and the ancillary ligands also influence the second-order NLO coefficients slightly. With an increase in the number of d-orbital electrons, a slight decrease in second-order NLO coefficients (β) was observed. An increase in the metal ion radius within the same family led to an increase in the βtot value of these complexes. When the central metal ion acts as an electronic donor, the transition energy relative to the maximal oscillator strength is smaller and its corresponding βtot value is larger.
  • 加载中
    1. [1]

      (1) Bozec, H. L.; Renouard, T. Eur. J. Inorg. Chem. 2000, 2, 229.

    2. [2]

      (2) Dumur, F.; Mayer, C. R.; Hoang, T. K.; Ledoux, R. I.; Miomandre, F.; Clavier, G.; Dumas, E.; Mallet, R. R.; Fri li, M.; Zyss, J.; Scheresse, F. Inorg. Chem. 2009, 48, 8120.  

    3. [3]

      (3) Han, H. Y.; Song, Y. L.; Hou, H.W.; Fan, Y. T.; Zhu, Y. Dalton Trans. 2006, 1972.

    4. [4]

      (4) Liu, C. G.; Qiu, Y. Q.; Sun, S. L.; Chen, H.; Li, N.; Su, Z. M. Chem. Phys. Lett. 2006, 429, 570.  

    5. [5]

      (5) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 315.

    6. [6]

      [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]

    7. [7]

      (6) Baccouche, A.; Peigné, B.; Ibersiene, F.; Hammoutene, D.; Boutarfa?a, A.; Boucekkine, A.; Feuvrie, C.; Maury, O.; Ledoux, I.; Bozec, H. L. J. Phys. Chem. A 2010, 114, 5429.  

    8. [8]

      (7) Li, D. P.; Li, C. H.;Wang, J.; Kang, L. C.;Wu, T.; Li, Y. Z.; You, X. Z. Eur. J. Inorg. Chem. 2009, 32, 4844.

    9. [9]

      (8) Sénéchal, D. K.; Hemeryck, A.; Tancrez, N.; Toupet, L.; Gareth, W. J. A.; Ledoux, I.; Zyss, J.; Boucekkine, A.; Guégan, J. P.; Bozec, H. L.; Maury, O. J. Am. Chem. Soc. 2006, 128, 12243.  

    10. [10]

      (9) Locatelli, D.; Quici, S.; Righetto, S.; Roberto, D.; Tessore, F.; Ashwell, G. J.; Amiri, M. Prog. Solid State Chem. 2005, 33, 223.  

    11. [11]

      (10) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garín, J.; Orduna, J. J. Am. Chem. Soc. 2005, 127, 13399.  

    12. [12]

      (11) Pizzotti, M.; U , R.; Dra netti, C.; Annoni, E. Organometallics 2003, 22, 4001.  

    13. [13]

      (12) Frazier, C. C.; Harvey, M. A.; Cockerham, M. P. J. Phys. Chem. 1986, 90, 5703.  

    14. [14]

      (13) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049.  

    15. [15]

      (14) Britovesk, G. J. P.; Gibson, V. C.; Kimberley, B. S. Chem. Commun. 1998, 849.

    16. [16]

      (15) Fan, R. Q.; Zu, D. S.; Mu, Y.; Li, G. H.; Feng, S. H. Chem. J. Chin. Univ. 2005, 26, 1215.

    17. [17]

      [范瑞清, 朱东升, 母瀛, 李光华, 冯守华. 高等学校化学学报, 2005, 26, 1215.]

    18. [18]

      (16) Lu, X. Y.; Xu, H. J.; Chen, X. T. Inorg. Chem. Commun. 2009, 12, 887.  

    19. [19]

      (17) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.  

    20. [20]

      (18) Dehu, C.; Meyers, F.; Bredas, J. L. J. Am. Chem. Soc. 1993, 115, 6198.  

    21. [21]

      (19) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.  

    22. [22]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    23. [23]

      (21) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 09W, Revision A.01; Gaussian, Inc.:Wallingford, CT, 2009.

    24. [24]

      (22) Yang, G. C.; Fang, L.; Tan, K.; Shi, S. Q.; Su, Z. M.;Wang, R. S. Organometalics 2007, 26, 2082.  

    25. [25]

      (23) Fu,W.; Feng, J. K.; Ren, A. M.; Sun, X. Y.; Jin, H.W. Chem. J. Chin. Univ. 2000, 21, 616.

    26. [26]

      [付伟, 封继康, 任爱民, 孙秀云, 金宏威. 高等学校化学学报, 2000, 21, 616.]

    27. [27]

      (24) Feng, J. K. Acta. Chim. Sin. 2005, 63, 1245.

    28. [28]

      [封继康. 化学学报, 2005, 63, 1245.]

    29. [29]

      (25) Zhang, T. G.; Zhao, Y. X.; Asselberghs, I.; Persoons, A.; Clays, K.; Therien, M. J. J. Am. Chem. Soc. 2005, 127, 9710.  

    30. [30]

      (26) Pfiyadarshy, S.; Thefien, M. J.; Beratan, D. N. J. Am. Chem. Soc. 1996, 118, 1504.  

    31. [31]

      (27) Chen, X.; Li, Y.; Jing, Q. Acta. Chim. Sin. 2007, 66, 2451.

    32. [32]

      [陈新, 李瑛, 蒋青. 化学学报, 2007, 66, 2451.]

    33. [33]

      (28) Roy, A. S.; Biswas, M. K.;Weyhermuller, T.; Ghosh, P. Dalton Trans. 2011, 40, 146.  

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(919)
  • Abstract views(2621)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return