Citation: WANG Cai-Cai, LI Jian-Hui, SUN Yi-Fei, ZHU Xiao-Quan, HUANG Chuan-Jing, WENG Wei-Zheng, WAN Hui-Lin. Synthesis and Catalytic Performances of Mesoporous CeNiO Catalysts for the Oxidative Dehydrogenation of Propane to Propene[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2421-2426. doi: 10.3866/PKU.WHXB20110932 shu

Synthesis and Catalytic Performances of Mesoporous CeNiO Catalysts for the Oxidative Dehydrogenation of Propane to Propene

  • Received Date: 2 June 2011
    Available Online: 27 July 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB732300) (973) (2010CB732300) 国家自然科学基金(21073148, 21033006, 20803060) (21073148, 21033006, 20803060)福建省自然科学基金(2009J01038)资助 (2009J01038)

  • Mesoporous NiO and CeNiO catalysts were prepared by homogeneous precipitation using sodium dodecyl sulfate (SDS) mixed with triblock copolymer P123 as a template and urea as a hydrolysiscontrolling agent. The prepared catalysts were evaluated for the oxidative dehydrogenation of propane (ODP) to propene and the structure and properties of the catalysts were characterized by N2 adsorptiondesorption, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and H2 temperatureprogrammed reduction (H2-TPR). The results showed that between 400 and 450°C, the NiO and CeNiO catalysts exhibited similar catalytic behavior for the ODP reaction but at low temperatures (<400°C) the catalysts doped with Ce had higher catalytic activity. On NiO only a 3.1% propene yield was obtained at 325°C while the yield on 5CeNiO (nCe/nNi=5%) was as high as 12.2% at the same temperature. The results of N2 adsorption-desorption and TEM indicated that both the prepared NiO and CeNiO catalysts possessed a high surface area and a wormhole-like mesostructure. The H2-TPR results revealed that part of the oxygen species became more reducible because of the presence of Ce in CeNiO, which may be the main reason for the higher activities of the catalysts.
  • 加载中
    1. [1]

      (1) Cavani, F.; Ballarini, N.; Cericola, A. Catal. Today 2007, 127, 113.  

    2. [2]

      (2) Batiot, C.; Hodnett, B. Appl. Catal. A 1996, 137, 179.  

    3. [3]

      (3) Liu,W.; Lai, S. Y.; Dai, H.;Wang, S.; Sun, H.; Au, C. T. Catal. Today 2008, 131, 450.  

    4. [4]

      (4) Liu, Y. M.; Cao, Y.; Yi, N.; Feng,W. L.; Dai,W. L.; Yan, S. R.; He, H. Y.; Fan, K. N. J. Catal. 2004, 224, 417.  

    5. [5]

      (5) Liu, Y. M.; Cao, Y.; Zhu, K. K.; Yan, S. R.; Dai,W. L.; He, H. Y.; Fan, K. N. Chem. Commun. 2002, 2832.

    6. [6]

      (6) Liu, Y. M.; Feng,W. L.;Wang, L. C.; Cao, Y.; Dai,W. L.; He, H. Y.; Fan, K. N. Catal. Lett. 2006, 106, 145.  

    7. [7]

      (7) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2001, 198, 232.  

    8. [8]

      (8) Chen, K.; Iglesia, E.; Bell, A. T. J. Phys. Chem. B 2001, 105, 646.  

    9. [9]

      (9) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2000, 195, 244.  

    10. [10]

      (10) Samson, K.; Klisinska, A.; Gressel, I.; Grzybowska, B. React. Kinet. Catal. Lett. 2002, 77, 309.  

    11. [11]

      (11) Dury, F.; Gaigneaux, E.; Ruiz, P. Appl. Catal. A 2003, 242, 187.  

    12. [12]

      (12) Ducarme, V.; Martin, G. Catal. Lett. 1994, 23, 97.  

    13. [13]

      (13) Jalowiecki-Duhamel, L.; Ponchel, A.; Lamonier, C.; D?Huysser, A.; Barbaux, Y. Langmuir 2001, 17, 1511.  

    14. [14]

      (14) Boizumault-Moriceau, P.; Pennequin, A.; Grzybowska, B.; Barbaux, Y. Appl. Catal. A 2003, 245, 55.  

    15. [15]

      (15) Liu, Y. M.;Wang, L. C.; Chen, M.; Xu, J.; Cao, Y.; He, H. Y.; Fan, K. N. Catal. Lett. 2009, 130, 350.  

    16. [16]

      (16) He, Y.;Wu, Y.; Chen, T.;Weng,W.;Wan, H. Catal. Commun. 2006, 7, 268.  

    17. [17]

      (17) Wu, Y.; He, Y.; Chen, T.;Weng,W.;Wan, H. Appl. Surf. Sci. 2006, 252, 5220.  

    18. [18]

      (18) Li, J. H.;Wang, C. C.; Huang, C. J.;Weng,W. Z.;Wan, H. L. Catal. Lett. 2010, 137, 81.  

    19. [19]

      (19) Li, J. H.;Wang, C. C.; Huang, C. J.; Sun, Y. F.;Weng,W. Z.; Wan, H. L. Appl. Catal. A 2010, 382, 99.  

    20. [20]

      (20) Liu, Q.; Zhang,W. M.; Cui, Z. M.; Zhang, B.;Wan, L. J.; Song, W. G. Microporous Mesoporous Mat. 2007, 100, 233.  

    21. [21]

      (21) Liu, J.; Du, S.;Wei, L.; Liu, H.; Tian, Y.; Chen, Y. Catal. Lett. 2006, 60, 3601.

    22. [22]

      (22) Sominski, E.; Gedanken, A.; Perkas, N.; Buchkremer, H.; Menzler, N.; Zhang, L.; Yu, J. Microporous Mesoporous Mat. 2003, 60, 91.  

    23. [23]

      (23) Banerjee, S.; Santhanam, A.; Dhathathreyan, A.; Rao, P. M. Langmuir 2003, 19, 5522.  

    24. [24]

      (24) Zhao, D. D.; Xu, M.W.; Zhou,W. J.; Zhang, J.; Li, H. L. Electrochim. Acta 2008, 53, 2699.  

    25. [25]

      (25) Liu, Y.; Zhao,W.; Zhang, X. Electrochim. Acta 2008, 53, 3296.  

    26. [26]

      (26) Tan, Y.; Srinivasan, S.; Choi, K. S. J. Am. Chem. Soc. 2005, 127, 3596.  

    27. [27]

      (27) Liu, Y. M.; Cao, Y.; Dai,W. L.; Fan, K. N. Petrochemical Technology 2004, 33, 368.

    28. [28]

      [刘永梅, 曹勇, 戴维林, 范康年. 石油化工2004, 33, 368.]

    29. [29]

      (28) Liu, Y. M. Preparation and Characterization of New Nanostructured Catalysts for Oxidative Dehydrogenation of Propane to Propene. Ph. D. Dissertation, Fudan University, Shanghai, 2004.

    30. [30]

      [刘咏梅. 丙烷氧化脱氢制丙烯纳米催化剂的制备表征及应用

    31. [31]

      [D]. 上海: 复旦大学, 2004.]

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(982)
  • Abstract views(2772)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return