Citation:
HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu. Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Physico-Chimica Sinica,
;2011, 27(09): 2051-2058.
doi:
10.3866/PKU.WHXB20110930
-
Theoretical predictions are helpful for the spectroscopic identification of complicated organic and biological systems. For nuclear magnetic resonance (NMR) parameters, however, the chemical shift and quadrupole coupling constant (QCC) of the solid crystals are considerably affected by hydrogen bonding and van der Waals interactions from neighboring molecules and the crystal lattice leading to significant spectroscopic differences compared to isolated monomer molecules. Therefore, it is necessary to take these two factors into account for the precise predictions of chemical shifts and QCCs of solid crystals. L-alanylglycine dipeptide and nitrobenzene were selected as model crystals to demonstrate these effects. Here, the chemical shielding (CS) and QCC data were calculated based on the periodic structure model. The incorporation of intermolecular hydrogen bonding and crystal lattice effects by periodic models was found to be crucial in obtaining reliable predictions of CS and QCC values and rendering more explicit spectroscopic assignments for solid organic and biological systems.
-
-
-
[1]
(1) Laws, D. D.; Bitter, H. M. L.; Jerschow, A. Angew. Chem. Int. Edit. 2002, 41, 3096.
-
[2]
(2) Hologne, M.; Faelber, K.; Diehl, A.; Reif, B. J. Am. Chem. Soc. 2005, 127, 11208.
-
[3]
(3) Wei, Y.; Lee, D.; Ramamoorthy, A. J. Am. Chem. Soc. 2001, 123, 6118.
-
[4]
(4) Bi, Y. C.;Wang, Y. J.;Wang, J. F. Chin. J. Magn. Reson. 2011, 28, 177. [毕允晨, 王玉娟, 王俊峰. 波谱学杂志, 2011, 28, 177.]
-
[5]
(5) Chae, S.; Lee, Y.; Han, O.; Lee, S. Chin. J. Magn. Reson. 2010, 27, 436. [Chae, S.; Lee, Y.; Han, O.; Lee, S. 波谱学杂志, 2010, 27, 436.]
-
[6]
(6) Zheng, A. M.; Yang, M. H.; Yue, Y.; Ye, C. H.; Deng, F. Chem. Phys. Lett. 2004, 399, 172.
-
[7]
(7) Zheng, A.; Chen, L.; Yang, J.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Commun. 2005, 2474.
-
[8]
(8) Esrafili, M. D.; Behzadi, H.; Beheshtian, J.; Hadipour, N. L. J. Mol. Graph. Model. 2008, 27, 326.
-
[9]
(9) Zheng, A.; Liu, S.; Deng, F. J. Phys. Chem. C 2009, 113, 15018.
-
[10]
(10) Xu, L.; Li, B. H.; Sun, P. C. Chin. J. Magn. Reson. 2010, 27, 597. [徐璐, 李宝会, 孙平川. 波谱学杂志, 2010, 27, 597.]
- [11]
-
[12]
(12) Tafazzoli, M.; Amini, S. K. Magn. Reson. Chem. 2008, 46, 370.
-
[13]
(13) Koch, M.; Germain, G. Acta Crystallogr. B 1970, 26, 410.
-
[14]
(14) Boese, R.; Blaser, D.; Nussbaumer, M.; Kry wski, T. M. Struct. Chem. 1992, 3, 363.
-
[15]
(15) Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering, 2nd ed.; Dover Publications Inc.: New York, 1996.
-
[16]
(16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
[17]
(17) Monkhorst, H.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- [18]
-
[19]
(19) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; Fabris, S.; Fratesi, G.; de Gironcoli, S.; Gebauer, R.; Gerstmann, U.; u ussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys.: Condes. Matter 2009, 21, 395502.
-
[20]
(20) Trevino, S. F.; Prince, E.; Hubbard, C. R. J. Chem. Phys. 1980, 73, 2996.
-
[21]
(21) Freude, D.; Haase, J. Quadrupole Effects in Solid-State Nuclear In Magnetic Resonance. In NMR Basic Principles and Progress; Springer-Verlag: Berlin, 1993; Vol. 29, pp 1-90.
-
[22]
(22) Vega, A. J. Quadrupolar Nuclei in Solids. In Encyclopedia of Magnetic Resonance; JohnWiley & Sons, Ltd: New York, 1996; Vol. 6, p 3869.
-
[23]
(23) Man, P. P. Quadrupole Couplings in Nuclear Magnetic Resonance, General. In Encyclopedia of Analytical Chemistry; JohnWiley & Sons, Ltd.: New York, 2000; p 12224.
-
[24]
(24) Chen, X.; Zhan, C. G. J. Mol. Struct. -Theochem 2004, 682, 73.
-
[25]
(25) Zheng, A.; Liu, S. B.; Deng, F. J. Comput. Chem. 2009, 30, 222.
-
[26]
(26) Birn, J.; Poon, A.; Mao, Y.; Ramamoorthy, A. J. Am. Chem. Soc. 2004, 126, 8529.
-
[27]
(27) Strohmeier, M.; Grant, D. M. J. Am. Chem. Soc. 2004, 126, 966.
-
[28]
(28) Gervais, C.; Dupree, R.; Pike, K. J.; Bonhomme, C.; Profeta, M.; Pickard, C. J.; Mauri, F. J. Phys. Chem. A 2005, 109, 6960.
-
[29]
(29) Edmonds, D. T.; Speight, P. A. Phys. Lett. A 1971, 34, 325.
-
[30]
(30) Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A. J. Phys. Chem. 1981, 76, 3190.
-
[31]
(31) Moore, E. A. Chem. Phys. Lett. 2000, 317, 360;
- [32]
-
[33]
(33) Penner, G. H.; Bernard, G. M.;Wasylishen, R. E.; Barrett, A.; Curtis, R. D. J. Org. Chem. 2003, 68, 4258.
-
[1]
-
-
-
[1]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[2]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
-
[5]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[6]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[7]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
-
[8]
Haiyang Jin , Yonghai Hui , Yongfei Zhang , Lijun Gao , Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022
-
[9]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[10]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[11]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[12]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[13]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[14]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[16]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[17]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[18]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[19]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[20]
Hui Li , Jia Nie , Zhongyuan Lü , Hujun Qian , Youliang Zhu , Fuquan Bai , Zexing Qu , Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007
-
[1]
Metrics
- PDF Downloads(876)
- Abstract views(2631)
- HTML views(33)