Citation: HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu. Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2051-2058. doi: 10.3866/PKU.WHXB20110930 shu

Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines

  • Received Date: 3 June 2011
    Available Online: 26 July 2011

    Fund Project: 杭州市科技发展计划项目(20091133B09) (20091133B09) 浙江省医药卫生科研基金(2009A158) (2009A158)浙江省公益性技术应用研究计划项目(2010C33132) (2010C33132)

  • Theoretical predictions are helpful for the spectroscopic identification of complicated organic and biological systems. For nuclear magnetic resonance (NMR) parameters, however, the chemical shift and quadrupole coupling constant (QCC) of the solid crystals are considerably affected by hydrogen bonding and van der Waals interactions from neighboring molecules and the crystal lattice leading to significant spectroscopic differences compared to isolated monomer molecules. Therefore, it is necessary to take these two factors into account for the precise predictions of chemical shifts and QCCs of solid crystals. L-alanylglycine dipeptide and nitrobenzene were selected as model crystals to demonstrate these effects. Here, the chemical shielding (CS) and QCC data were calculated based on the periodic structure model. The incorporation of intermolecular hydrogen bonding and crystal lattice effects by periodic models was found to be crucial in obtaining reliable predictions of CS and QCC values and rendering more explicit spectroscopic assignments for solid organic and biological systems.
  • 加载中
    1. [1]

      (1) Laws, D. D.; Bitter, H. M. L.; Jerschow, A. Angew. Chem. Int. Edit. 2002, 41, 3096.  

    2. [2]

      (2) Hologne, M.; Faelber, K.; Diehl, A.; Reif, B. J. Am. Chem. Soc. 2005, 127, 11208.  

    3. [3]

      (3) Wei, Y.; Lee, D.; Ramamoorthy, A. J. Am. Chem. Soc. 2001, 123, 6118.  

    4. [4]

      (4) Bi, Y. C.;Wang, Y. J.;Wang, J. F. Chin. J. Magn. Reson. 2011, 28, 177. [毕允晨, 王玉娟, 王俊峰. 波谱学杂志, 2011, 28, 177.]

    5. [5]

      (5) Chae, S.; Lee, Y.; Han, O.; Lee, S. Chin. J. Magn. Reson. 2010, 27, 436. [Chae, S.; Lee, Y.; Han, O.; Lee, S. 波谱学杂志, 2010, 27, 436.]

    6. [6]

      (6) Zheng, A. M.; Yang, M. H.; Yue, Y.; Ye, C. H.; Deng, F. Chem. Phys. Lett. 2004, 399, 172.  

    7. [7]

      (7) Zheng, A.; Chen, L.; Yang, J.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Commun. 2005, 2474.

    8. [8]

      (8) Esrafili, M. D.; Behzadi, H.; Beheshtian, J.; Hadipour, N. L. J. Mol. Graph. Model. 2008, 27, 326.  

    9. [9]

      (9) Zheng, A.; Liu, S.; Deng, F. J. Phys. Chem. C 2009, 113, 15018.  

    10. [10]

      (10) Xu, L.; Li, B. H.; Sun, P. C. Chin. J. Magn. Reson. 2010, 27, 597. [徐璐, 李宝会, 孙平川. 波谱学杂志, 2010, 27, 597.]

    11. [11]

      (11) Moon, S.; Case, D. A. J. Comput. Chem. 2006, 27, 825.  

    12. [12]

      (12) Tafazzoli, M.; Amini, S. K. Magn. Reson. Chem. 2008, 46, 370.  

    13. [13]

      (13) Koch, M.; Germain, G. Acta Crystallogr. B 1970, 26, 410.  

    14. [14]

      (14) Boese, R.; Blaser, D.; Nussbaumer, M.; Kry wski, T. M. Struct. Chem. 1992, 3, 363.  

    15. [15]

      (15) Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering, 2nd ed.; Dover Publications Inc.: New York, 1996.

    16. [16]

      (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    17. [17]

      (17) Monkhorst, H.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    18. [18]

      (18) Bryce, D.; Bultz, E. Chem. Eur. J. 2007, 13, 4786.  

    19. [19]

      (19) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; Fabris, S.; Fratesi, G.; de Gironcoli, S.; Gebauer, R.; Gerstmann, U.; u ussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys.: Condes. Matter 2009, 21, 395502.  

    20. [20]

      (20) Trevino, S. F.; Prince, E.; Hubbard, C. R. J. Chem. Phys. 1980, 73, 2996.  

    21. [21]

      (21) Freude, D.; Haase, J. Quadrupole Effects in Solid-State Nuclear In Magnetic Resonance. In NMR Basic Principles and Progress; Springer-Verlag: Berlin, 1993; Vol. 29, pp 1-90.

    22. [22]

      (22) Vega, A. J. Quadrupolar Nuclei in Solids. In Encyclopedia of Magnetic Resonance; JohnWiley & Sons, Ltd: New York, 1996; Vol. 6, p 3869.

    23. [23]

      (23) Man, P. P. Quadrupole Couplings in Nuclear Magnetic Resonance, General. In Encyclopedia of Analytical Chemistry; JohnWiley & Sons, Ltd.: New York, 2000; p 12224.

    24. [24]

      (24) Chen, X.; Zhan, C. G. J. Mol. Struct. -Theochem 2004, 682, 73.  

    25. [25]

      (25) Zheng, A.; Liu, S. B.; Deng, F. J. Comput. Chem. 2009, 30, 222.  

    26. [26]

      (26) Birn, J.; Poon, A.; Mao, Y.; Ramamoorthy, A. J. Am. Chem. Soc. 2004, 126, 8529.  

    27. [27]

      (27) Strohmeier, M.; Grant, D. M. J. Am. Chem. Soc. 2004, 126, 966.

    28. [28]

      (28) Gervais, C.; Dupree, R.; Pike, K. J.; Bonhomme, C.; Profeta, M.; Pickard, C. J.; Mauri, F. J. Phys. Chem. A 2005, 109, 6960.  

    29. [29]

      (29) Edmonds, D. T.; Speight, P. A. Phys. Lett. A 1971, 34, 325.  

    30. [30]

      (30) Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A. J. Phys. Chem. 1981, 76, 3190.

    31. [31]

      (31) Moore, E. A. Chem. Phys. Lett. 2000, 317, 360;

    32. [32]

      (32) Schindler, M. J. Am. Chem. Soc. 1987, 109, 5950.  

    33. [33]

      (33) Penner, G. H.; Bernard, G. M.;Wasylishen, R. E.; Barrett, A.; Curtis, R. D. J. Org. Chem. 2003, 68, 4258.  

  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    8. [8]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    9. [9]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

Metrics
  • PDF Downloads(876)
  • Abstract views(2631)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return