Citation: HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu. Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2051-2058. doi: 10.3866/PKU.WHXB20110930 shu

Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines

  • Received Date: 3 June 2011
    Available Online: 26 July 2011

    Fund Project: 杭州市科技发展计划项目(20091133B09) (20091133B09) 浙江省医药卫生科研基金(2009A158) (2009A158)浙江省公益性技术应用研究计划项目(2010C33132) (2010C33132)

  • Theoretical predictions are helpful for the spectroscopic identification of complicated organic and biological systems. For nuclear magnetic resonance (NMR) parameters, however, the chemical shift and quadrupole coupling constant (QCC) of the solid crystals are considerably affected by hydrogen bonding and van der Waals interactions from neighboring molecules and the crystal lattice leading to significant spectroscopic differences compared to isolated monomer molecules. Therefore, it is necessary to take these two factors into account for the precise predictions of chemical shifts and QCCs of solid crystals. L-alanylglycine dipeptide and nitrobenzene were selected as model crystals to demonstrate these effects. Here, the chemical shielding (CS) and QCC data were calculated based on the periodic structure model. The incorporation of intermolecular hydrogen bonding and crystal lattice effects by periodic models was found to be crucial in obtaining reliable predictions of CS and QCC values and rendering more explicit spectroscopic assignments for solid organic and biological systems.
  • 加载中
    1. [1]

      (1) Laws, D. D.; Bitter, H. M. L.; Jerschow, A. Angew. Chem. Int. Edit. 2002, 41, 3096.  

    2. [2]

      (2) Hologne, M.; Faelber, K.; Diehl, A.; Reif, B. J. Am. Chem. Soc. 2005, 127, 11208.  

    3. [3]

      (3) Wei, Y.; Lee, D.; Ramamoorthy, A. J. Am. Chem. Soc. 2001, 123, 6118.  

    4. [4]

      (4) Bi, Y. C.;Wang, Y. J.;Wang, J. F. Chin. J. Magn. Reson. 2011, 28, 177. [毕允晨, 王玉娟, 王俊峰. 波谱学杂志, 2011, 28, 177.]

    5. [5]

      (5) Chae, S.; Lee, Y.; Han, O.; Lee, S. Chin. J. Magn. Reson. 2010, 27, 436. [Chae, S.; Lee, Y.; Han, O.; Lee, S. 波谱学杂志, 2010, 27, 436.]

    6. [6]

      (6) Zheng, A. M.; Yang, M. H.; Yue, Y.; Ye, C. H.; Deng, F. Chem. Phys. Lett. 2004, 399, 172.  

    7. [7]

      (7) Zheng, A.; Chen, L.; Yang, J.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Commun. 2005, 2474.

    8. [8]

      (8) Esrafili, M. D.; Behzadi, H.; Beheshtian, J.; Hadipour, N. L. J. Mol. Graph. Model. 2008, 27, 326.  

    9. [9]

      (9) Zheng, A.; Liu, S.; Deng, F. J. Phys. Chem. C 2009, 113, 15018.  

    10. [10]

      (10) Xu, L.; Li, B. H.; Sun, P. C. Chin. J. Magn. Reson. 2010, 27, 597. [徐璐, 李宝会, 孙平川. 波谱学杂志, 2010, 27, 597.]

    11. [11]

      (11) Moon, S.; Case, D. A. J. Comput. Chem. 2006, 27, 825.  

    12. [12]

      (12) Tafazzoli, M.; Amini, S. K. Magn. Reson. Chem. 2008, 46, 370.  

    13. [13]

      (13) Koch, M.; Germain, G. Acta Crystallogr. B 1970, 26, 410.  

    14. [14]

      (14) Boese, R.; Blaser, D.; Nussbaumer, M.; Kry wski, T. M. Struct. Chem. 1992, 3, 363.  

    15. [15]

      (15) Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering, 2nd ed.; Dover Publications Inc.: New York, 1996.

    16. [16]

      (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    17. [17]

      (17) Monkhorst, H.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    18. [18]

      (18) Bryce, D.; Bultz, E. Chem. Eur. J. 2007, 13, 4786.  

    19. [19]

      (19) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; Fabris, S.; Fratesi, G.; de Gironcoli, S.; Gebauer, R.; Gerstmann, U.; u ussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys.: Condes. Matter 2009, 21, 395502.  

    20. [20]

      (20) Trevino, S. F.; Prince, E.; Hubbard, C. R. J. Chem. Phys. 1980, 73, 2996.  

    21. [21]

      (21) Freude, D.; Haase, J. Quadrupole Effects in Solid-State Nuclear In Magnetic Resonance. In NMR Basic Principles and Progress; Springer-Verlag: Berlin, 1993; Vol. 29, pp 1-90.

    22. [22]

      (22) Vega, A. J. Quadrupolar Nuclei in Solids. In Encyclopedia of Magnetic Resonance; JohnWiley & Sons, Ltd: New York, 1996; Vol. 6, p 3869.

    23. [23]

      (23) Man, P. P. Quadrupole Couplings in Nuclear Magnetic Resonance, General. In Encyclopedia of Analytical Chemistry; JohnWiley & Sons, Ltd.: New York, 2000; p 12224.

    24. [24]

      (24) Chen, X.; Zhan, C. G. J. Mol. Struct. -Theochem 2004, 682, 73.  

    25. [25]

      (25) Zheng, A.; Liu, S. B.; Deng, F. J. Comput. Chem. 2009, 30, 222.  

    26. [26]

      (26) Birn, J.; Poon, A.; Mao, Y.; Ramamoorthy, A. J. Am. Chem. Soc. 2004, 126, 8529.  

    27. [27]

      (27) Strohmeier, M.; Grant, D. M. J. Am. Chem. Soc. 2004, 126, 966.

    28. [28]

      (28) Gervais, C.; Dupree, R.; Pike, K. J.; Bonhomme, C.; Profeta, M.; Pickard, C. J.; Mauri, F. J. Phys. Chem. A 2005, 109, 6960.  

    29. [29]

      (29) Edmonds, D. T.; Speight, P. A. Phys. Lett. A 1971, 34, 325.  

    30. [30]

      (30) Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A. J. Phys. Chem. 1981, 76, 3190.

    31. [31]

      (31) Moore, E. A. Chem. Phys. Lett. 2000, 317, 360;

    32. [32]

      (32) Schindler, M. J. Am. Chem. Soc. 1987, 109, 5950.  

    33. [33]

      (33) Penner, G. H.; Bernard, G. M.;Wasylishen, R. E.; Barrett, A.; Curtis, R. D. J. Org. Chem. 2003, 68, 4258.  

  • 加载中
    1. [1]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    12. [12]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    17. [17]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(876)
  • Abstract views(2581)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return