Citation: YANG Ying, SONG Chang-Sheng, YE Ru-Qiang, MU Bo-Zhong. Hysteresis Behavior of Surfactin Monolayer at the Air/Water Interface[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2217-2221. doi: 10.3866/PKU.WHXB20110915 shu

Hysteresis Behavior of Surfactin Monolayer at the Air/Water Interface

  • Received Date: 17 May 2011
    Available Online: 11 July 2011

    Fund Project: 国家高技术研究发展计划项目(863) (2009AA063503)资助 (863) (2009AA063503)

  • Surfactin, one of the most surface-active microbial lipopeptides, can readily form an insoluble monolayer at the air/water interface. Consecutive compression-expansion cycles of surfactin with a β-hydroxyl fatty acid chain consisting of 14 carbon atoms were studied by a Langmuir film balance. A larger hysteresis loop was observed when the compression isotherm reached a plateau compared with that expanded at a lower surface pressure (20 mN·m-1). The 2nd cycle was shifted towards smaller molecular areas compared with the 1st cycle. We also studied the hysteresis cycles of the surfactin monolayer on subphase of different pH values. With a decrease in the subphase pH the hysteresis loop became smaller and the expansion isotherm curve underwent a longer pseudo plateau. Furthermore, the morphologies of the surfactin monolayers in the plateau region, which were transferred onto a mica surface, were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both AFM and SEM images gave three-dimensional surface aggregates with heights ranging from tens to hundreds of nanometers. The above results suggest that the formation of three-dimensional surface aggregates at the plateau region induces a large hysteresis loop in the surfactin monolayer, which can also be attributed to the submergence of molecules into the subphase when the peptide loop in the surfactin molecule is ionized.
  • 加载中
    1. [1]

      (1) Arima, K.; Kakinuma, A.; Tamura, G. Biochem. Biophys. Res. Commun. 1968, 31, 488.  

    2. [2]

      (2) Deleu, M.; Razafindralambo, H.; Popineau, Y.; Jacques, P.; Thonart, P.; Paquot, M. Colloids Surf. A 1999, 152, 3.  

    3. [3]

      (3) Morikawa, M.; Hirata, Y.; Imanaka, T. Biochim. Biophys. Acta 2000, 1488, 211.

    4. [4]

      (4) Ishigami, Y.; Osman, M.; Nakahara, H.; Sano, Y.; Ishiguro, R.; Matsumoto, M. Colloids Surf. B 1995, 4, 341.  

    5. [5]

      (5) Bernheimer, A.W.; Avigad, L. S. J. Gen. Microbiol. 1970, 61, 361.

    6. [6]

      (6) Vollenbroich, D.; Pauli, G.; Ozel, M.; Vater, J. Appl. Environ. Microbiol. 1997, 63, 44.

    7. [7]

      (7) Kracht, M.; Rokos, H.; Ozel, M.; Kowall, M.; Pauli, G.; Vater, J. J. Antibiot. 1999, 52, 613.

    8. [8]

      (8) Desai, J. D.; Banat, I. M. Microbiol. Mol. Biol. Rev. 1997, 61, 47.

    9. [9]

      (9) Schaller, K. D.; Fox, S. L.; Bruhn, D. F.; Noah, K. S.; Bala, G. A. Appl. Biochem. Biotechnol. 2004, 115, 827.  

    10. [10]

      (10) Yang, S. Z.; Wei, D. Z.; Mu, B. Z. J. Biochem. Biophys. Methods 2006, 68, 69.  

    11. [11]

      (11) Lang, S. Curr. Opin. Colloid Interface Sci. 2002, 7, 12.  

    12. [12]

      (12) Terheiden, A.; Rellinghaus, B.; Stappert, S.; Acet, M.; Mayer, C. J. Chem. Phys. 2004, 121, 510.  

    13. [13]

      (13) Grau, A.; mez-Fernandez, J. C.; Peypoux, F.; Ortiz, A. Biochim. Biophys. Acta 1999, 1418, 307.  

    14. [14]

      (14) Infante, M. R.; Moses, V. Int. J. Pept. Protein Res. 1994, 43, 173.

    15. [15]

      (15) Gallet, X.; Deleu, M.; Razafindralambo, H.; Jacques, P.; Thonart, P.; Paquot, M.; Brasseur, R. Langmuir 1999, 15, 2409.  

    16. [16]

      (16) Maget-Dana, R.; Ptak, M. J. Colloid Interface Sci. 1992, 153, 285.  

    17. [17]

      (17) Eeman, M.; Berquand, A.; Dufrene, Y. F.; Paquot, M.; Dufour, S.; Deleu, M. Langmuir 2006, 22, 11337.  

    18. [18]

      (18) Song, C. S.; Ye, R. Q.; Mu, B. Z. Colloids Surf. A 2007, 302, 82.  

    19. [19]

      (19) Youm, S. G.; Paeng, K.; Choi, Y. W.; Park, S.; Sohn, D.; Seo, Y. S.; Satija, S. K.; Kim, B. G.; Kim, S.; Park, S. Y. Langmuir 2005, 21, 5647.  

    20. [20]

      (20) Islam, M. N.; Kato, T. J. Chem. Phys. 2004, 121, 10217.  

    21. [21]

      (21) Lü, Y. N.; Yang, S. Z.; Mu, B. Z. Microbiology 2005, 32, 67. [吕应年, 杨世忠, 牟伯中. 微生物学通报, 2005, 32, 67.]

    22. [22]

      (22) Liu, X.; Haddad, N. I. A.; Yang, S.; Mu, B. Protein Pept. Lett. 2007, 14, 766.  

    23. [23]

      (23) Alonso, C.; Alig, T.; Yoon, J.; Bringezu, F.; Warriner, H.; Zasadzinski, J. A. Biophys. J. 2004, 87, 4188.  

    24. [24]

      (24) Zhu, J.; Eisenberg, A.; Lennox, R. B. Macromolecules 1992, 25, 6547.  

    25. [25]

      (25) Petriat, F.; Giasson, S. Langmuir 2005, 21, 7326.  

    26. [26]

      (26) Song, C. S.; Ye, R. Q.; Mu, B. Z. Colloids Surf. A 2008, 330, 49.  

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    3. [3]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    4. [4]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    5. [5]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    6. [6]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(813)
  • Abstract views(2300)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return