Citation: LI Wei, QI Chuan-Song, WU Xin-Min, RONG Hua, NG Liang-Fa. Relationship between Melting Point and the Interaction Energy of Alkyl Imidazolium Tetrafluoroborate Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2059-2064. doi: 10.3866/PKU.WHXB20110914 shu

Relationship between Melting Point and the Interaction Energy of Alkyl Imidazolium Tetrafluoroborate Ionic Liquids

  • Received Date: 26 April 2011
    Available Online: 11 July 2011

    Fund Project: 北京市属高等学校人才强教深化计划(PHR201008349)资助项目 (PHR201008349)

  • Eleven types of alkyl imidazolium tetrafluoroborate ionic liquids (ILs) have been investigated using the density functional theory (DFT) B3LYP method together with basis set 6-311++G(d,p). First, we performed geometry optimization of the ion system {[XIM] [BF4]n}(n-1)- (n=2, 3), which is composed of one alkyl imidazolium cation XIM+ and two or three BF4- anions. Then the intramolecular interaction energies were calculated for those structures with the lowest energies, and the basis set superposition error was corrected by the counterpoise method. The relationship between the experimental melting points and the interaction energies was also investigated. A linear correlation was found for the alkyl imidazolium tetrafluoroborate compounds studied, which was also consistent with the linear correlation previously found for amino acid cation based ILs. Our work shows the possibility of designing ILs with the help of quantum chemistry in the future.
  • 加载中
    1. [1]

      (1) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Karelson, M.; Visser, A. E.; Rogers, R. D. J. Chem. Inf. Comput. Sci. 2002, 42, 225.

    2. [2]

      (2) Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792.  

    3. [3]

      (3) Li, R. X. Green Solvent - the Synthesis and Application of Ionic Liquids; Chemical Industry Press: Beijing, 2004. [李汝雄. 绿色溶剂——离子液体的合成与应用. 北京: 化学工业出版社, 2004.]

    4. [4]

      (4) Zhang, S. J.; Lü, X. M. Ionic Liquids -from Fundamentals to Applications; Scientific Publish Ltd.: Beijing, 2006. [张锁江, 吕兴梅. 离子液体——从基础研究到工业应用. 北京: 科学出版社, 2006.]

    5. [5]

      (5) Katritzky, A. R.; Lomaka, A.; Petrukhin, R.; Jain, R.; Karelson, M.; Visser, A. E.; Rogers, R. D. J. Chem. Inf. Comput. Sci. 2002, 42, 71.

    6. [6]

      (6) Varnek, A.; Kireeva, N.; Tetko, I. V.; Baskin, I. I.; Solovev, V. P. J. Chem. Inf. Model. 2007, 47, 1111.  

    7. [7]

      (7) López-Martin, I.; Burello, E.; Davey, P. N.; Seddon, K. R.; Rothenberg, G. ChemPhysChem 2007, 8, 690.  

    8. [8]

      (8) Ren, Y. Y.; Qin, J.; Liu, H. X.; Yao, X. J.; Liu, M. C. QSAR Comb. Sci. 2009, 28, 1237.  

    9. [9]

      (9) Yan, C. Q.; Han, M. J.;Wan, H.; Guan, G. F. Fluid Phase Equilibria 2010, 292, 104.  

    10. [10]

      (10) Katsyuba, S. A.; Zvereva, E. E.; Vidis, A.; Dyson, P. J. J. Phys. Chem. A 2007, 111, 352.  

    11. [11]

      (11) Turner, E. A.; Pye, C. C.; Singer, R. D. J. Phys. Chem. A 2003, 107, 2277.  

    12. [12]

      (12) Li,W.;Wu, X. M.; Qi, C. S.; Rong, H.; ng, L. F. J. Mol. Struct.-Theochem 2010, 942, 19.  

    13. [13]

      (13) Li,W.; Rong, H.; Chen, Z. Y.;Wu, X. M. Acta Phys. -Chim. Sin. 2008, 24, 868. [李巍, 荣华, 陈中元, 吴新民. 物理化学学报, 2008, 24, 868.]

    14. [14]

      (14) Lü, R. Q.; Cao, Z. G.; Shen, G. P. J. Natural Gas Chem. 2007, 16, 428.  

    15. [15]

      (15) Umebayashi, Y.; Hamano, H.; Tsuzuki, S.; Lopes, J. N. C.; Pádua, A. A. H.; Kameda, Y.; Kohara, S.; Yamaguchi, T.; Fujii, K.; Ishiguro, S. J. Phys. Chem. B 2010, 114, 11715.  

    16. [16]

      (16) Tsuzuki, S.; Katoh, R.; Mikami, M. Mol. Phys. 2008, 106, 1621.  

    17. [17]

      (17) Shukla, M.; Srivastava, N.; Saha, S. J. Mol. Struct. 2010, 975, 349.  

    18. [18]

      (18) Xuan, X.; Guo, M.; Pei, Y.; Zheng, Y. Spectrochimica Acta A 2011, 78, 1492.  

    19. [19]

      (19) de Andrade, J.; Böes, E. S.; Stassen, H. J. Phys. Chem. B 2009, 113, 7541.  

    20. [20]

      (20) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision E.01; Gaussian Inc.:Wallingford, CT, 2004.

    21. [21]

      (21) Morrow, T. I.; Maginn, E. J. J. Phys. Chem. B 2002, 106, 12807.  

    22. [22]

      (22) van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem. Rev. 1994, 94, 1873.  

    23. [23]

      (23) Jansen, H. B.; Ros, P. Chem. Phys. Lett. 1969, 3, 140.  

    24. [24]

      (24) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.  

    25. [25]

      (25) Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y. M.;Welton, T.; Zora, J. A. J. Chem. Soc. Dalton Tran. 1995, 3467.

    26. [26]

      (26) Dymek, C. J.; Grossie, D. A.; Fratini, A. V. J. Mol. Struct. 1989, 213, 25.  

    27. [27]

      (27) The Reaxys Database. http://www.reaxys.com (accessed Jan 20, 2011).

    28. [28]

      (28) Jiang, D.;Wang, Y. Y.; Liu, J.; Dai, L. Y. Chemistry 2007, 70, 371. [蒋栋, 王媛媛, 刘洁, 戴立益. 化学通报, 2007, 70, 371.]

    29. [29]

      (29) Atkins, P.W.; Jones, L. L. Chemical Principles: The Quest for Insight;W. H. Freeman and Company: New York, 2002.

  • 加载中
    1. [1]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    18. [18]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(1000)
  • Abstract views(3234)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return