Citation: LIU Zhi-Feng, ZHU Heng-Jiang, CHEN Hang, LIU Li-Ren. Structures, Stabilities and Electronic Properties of InAs Tubelike Clusters and Single-Walled InAs Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2079-2087. doi: 10.3866/PKU.WHXB20110911 shu

Structures, Stabilities and Electronic Properties of InAs Tubelike Clusters and Single-Walled InAs Nanotubes

  • Received Date: 16 May 2011
    Available Online: 7 July 2011

    Fund Project: 理论物理新疆维吾尔自治区重点学科基金, 新疆维吾尔自治区自然科学基金(2010211A21) (2010211A21)新疆维吾尔自治区高校教育重点项目基金(xjedu2009i27)资助项目 (xjedu2009i27)

  • The geometric structures, stabilities, and electronic properties of InnAsn tubelike clusters at up to n=90 and single-walled InAs nanotubes (InAsNTs) were studied by density functional theory (DFT) calculations. The lowest-energy structures and electronic properties of the small InnAsn (n=1-3) clusters are consistent with those found in earlier studies. A family of stable tubelike structures with In-As alternating arrangement was observed when n≥4 and their structural units (four-membered rings and sixmembered rings) obey the general developing formula. The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster. The sizedependent properties of the frontier molecular orbital surfaces explain why we can successfully obtain long and stable tubelike clusters. They also illustrate the reason why InAsNTs can be synthesized experimentally. We also found that the single-walled InAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large bandgap.
  • 加载中
    1. [1]

      (1) Neumann,W. Mater. Chem. Phys. 2003, 81, 364.  

    2. [2]

      (2) Dobrowolski,W.; Kossut, J.; Story, T. Handb. Magn. Mater. 2003, 15, 289.  

    3. [3]

      (3) Kamat, P. V. Chem. Rev. 1993, 93, 267.  

    4. [4]

      (4) Cox, S. D.; Gier, T. E.; Stucky, G. D.; Bierlein, J. J. J. Am. Chem. Soc. 1988, 110, 2986.  

    5. [5]

      (5) Wang, Y.; Herron, N. J. J. Phys. Chem. 1988, 92, 4988.  

    6. [6]

      (6) Cooke, M. III-Vs Rev. 2006, 19, 18.

    7. [7]

      (7) Jenkins, P. P.; Macinnes, A. N.; Tabibazar, M.; Barron, A. R. Science 1994, 263, 1751.  

    8. [8]

      (8) Dick, K. A.; Caroff, P.; Bolinssonl, J.; Messing, M. E.; Johansson, J.; Deppert, K.;Wallenberg, L. R.; Samuelson, L. Semicond. Sci. Technol. 2010, 25, 024009.  

    9. [9]

      (9) Cirlin, G. E.; Dubrovskii, V. G.; Samsonenko, Y. B.; Bouravleuv, A. D.; Durose, K.; Proskuryakov, Y. Y.; Mendes, B.; Bowen, L.; Kaliteevski, M. A.; Abram, R. A.; Zeze, D. Phys. Rev. B 2010, 82, 035302.  

    10. [10]

      (10) Perera, S.; Pemasiri, K.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Appl. Phys. Lett. 2010, 97, 023106.  

    11. [11]

      (11) Patriarche, G.; Glas, F.; Tchernycheva, M.; Sartel, C.; Largeau, L.; Harmand, J. C.; Cirlin, G. E. Nano. Lett. 2008, 8, 1638.  

    12. [12]

      (12) Song, B.; Cao, P. L. Phys. Lett. A. 2002, 300, 485.  

    13. [13]

      (13) Gutsev, G. L.; O'Neal, R. H.; Saha, B. C.; Mochena, M. D.; Johnson, E.; Bauschlicher, C.W., Jr. J. Phys. Chem. A 2008, 112, 10728.  

    14. [14]

      (14) Bai, Q. G.; Song, B.; Hou, J. Y.; He, P. M. Phys. Lett. A 2008, 372, 4545.  

    15. [15]

      (15) ldberger, J.; He, R.; Zhang, Y.; Lee, S.; Choi, H. J.; Yang, P. Nature 2003, 422, 599.  

    16. [16]

      (16) Xu, Z.; lberg, D.; Bandoa, Y. Chem. Phys. Lett. 2009, 480, 110.

    17. [17]

      (17) Guo, Y. H.; Yan, X. H.; Yang, Y. R. Phys. Lett. A 2009, 373, 367.  

    18. [18]

      (18) Louail, L.; Maouche, D.; Hachemi, A. Mater. Lett. 2006, 60, 3269.  

    19. [19]

      (19) Bolshakova, I.; Kost, Y.; Makido, O.; Shurygin, F. J. Cryst. Growth 2008, 310, 2254.  

    20. [20]

      (20) Wernersson, L. E.; Lind, E.; Lembke, J.; Martinsson, B.; Seifert, W. J. Cryst. Growth 2005, 280, 81.  

    21. [21]

      (21) Tomioka, K.; Mohan, P.; Noborisaka, J.; Hara, S.; Motohisa, J.; Fukui, T. J. Cryst. Growth 2007, 298, 644.  

    22. [22]

      (22) Persson, A. I.; Fröberg, L. E.; Samuelson, L.; Linke, H. Nanotechnology 2009, 20, 225304.  

    23. [23]

      (23) Cirlin, G. E.; Dubrovskii, V. G.; Petrov, V. N.; Polyakov, N. K.; Korneeva, N. P.; Demidov, V. N.; lubok, O.; Masalov, S. A.; Kurochkin, D. V.; rbenko, O. M.; Komyak, N. I.; Ustinov, V. M.; E rov, A. Y.; Kovsh, A. R.; Maximov, M. V.; Tsatsul'nikovz, A. F.; Volovikz, B. V.; Zhukov, A. E.; Kop'ev, P. S.; Alferov, Z. I.; Ledentsov, N. N.; Grundmann, M.; Bimberg, D. Semicond. Sci. Technol. 1998, 13, 1262.  

    24. [24]

      (24) Mohan, P.; Motohisa, J.; Fukui, T. Appl. Phys. Lett. 2006, 88, 013110.  

    25. [25]

      (25) Costales, A.; Kandalam, A. K.; Franco, R.; Pandey, R. J. Phys. Chem. B 2002, 106, 1940.  

    26. [26]

      (26) Costales, A.; Pandey, R. Chem. Phys. Lett. 2002, 362, 210.  

    27. [27]

      (27) Sarkar, P.; Springborg, M. Phys. Rev. B 2003, 68, 235409.  

    28. [28]

      (28) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  

    29. [29]

      (29) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    30. [30]

      (30) Wadt,W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.03; Gaussian Inc.:Wallingford, CT, 2004.

    32. [32]

      (32) Zhao, J. J.; Hou, X. L.; Xie, R. H. Phys. Rev. B 2006, 74, 035319.  

    33. [33]

      (33) Guo, L. Comput. Mater. Sci. 2008, 42, 489.  

    34. [34]

      (34) Wang, L.; Zhao, J. J. J. Mol. Struct. -Theochem 2008, 862, 133.  

    35. [35]

      (35) Zhao, J. J.;Wang, L.; Jia, J. M.; Chen, X. S.; Zhou, X. L.; Lu, W. Chem. Phys. Lett. 2007, 433, 29.

    36. [36]

      (36) Phillips, J. C. Bond and Bands in Demiconductors; Academic: New York, 1973.

    37. [37]

      (37) Hellwege, K. H.; Madelung, O. Landolt-Börnstein, New Series, Group III; Springer: Berlin, 1982; p 17.

    38. [38]

      (38) Zhang, S. L.; Zhang, Y. H.; Huang, S. P.; Liu, H.; Tian, H. P. Chem. Phys. Lett. 2010, 498, 172.  

    39. [39]

      (39) Shen, X. Y.; Xu, Y. G.; He, C. L.; Liu, H. T.; Li, J. M. Eur. Phys. J. D 2005, 34, 109.  

    40. [40]

      (40) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.  

    41. [41]

      (41) Tomic, S.; Montanari, B.; Harrisona, N. M. Physica E 2008, 40, 2125.  

    42. [42]

      (42) Lacroix, Y.; Tran, C. A.;Watkins, S. P.; Thewalt, M. L.W. J. Appl. Phys. 1996, 80, 6416.  

    43. [43]

      (43) Alam, K. M.; Ray, A. K. Phys. Rev. B 2008, 77, 035436.  

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(1092)
  • Abstract views(2868)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return