Citation: LI Di, CHEN Hong-Chong, LI Jin-Hua, ZHOU Bao-Xue, CAI Wei-Min. Photoelectrocatalytic Performance and Reaction Mechanism of Different Organics upon Adsorption on a TiO2 Nanotube Array Electrode[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2153-2159. doi: 10.3866/PKU.WHXB20110910 shu

Photoelectrocatalytic Performance and Reaction Mechanism of Different Organics upon Adsorption on a TiO2 Nanotube Array Electrode

  • Received Date: 28 March 2011
    Available Online: 7 July 2011

    Fund Project: 国家高技术研究发展计划项目(863) (2009AA063003)资助 (863) (2009AA063003)

  • The kinetics and mechanism of the photoelectrocatalytic degradation of glucose with weak adsorption and potassium hydrogen phthalate with strong adsorption on a self-organized and highly ordered TiO2 nanotube array (TNA) were investigated using a thin layer reactor in which the organic compounds were completely and quickly oxidized. The photogenerated current-time (I-t) profiles were used to analyze the microprocesses of the photoelectrochemical catalytic degradation on the TNA electrode. For glucose the I-t curve increased sharply initially and then decreased rapidly followed by a slow decrease. This is due to the weak adsorbability of glucose and it adsorbed slowly onto the surface of the TNA electrode from the bulk solution. However, the I-t curve for potassium hydrogen phthalate had quite a different trend as it increased sharply initially and then continued to increase and then decreased slowly and this was due to the strong adsorbability and mass existence of potassium hydrogen phthalate on the electrode and, in addition, the low degradability of phthalic acid. The adsorption properties and adsorption coefficient of the organic compounds and the reaction mechanism were also analyzed. We conclude that the obtained photoelectrocatalytic oxidation rate of the organic compounds in the thin-layer cell assisted in determining the surface reaction process and the micro-mechanism of organic compound degradation on the TNA electrode.
  • 加载中
    1. [1]

      (1) Hoffmann, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69.  

    2. [2]

      (2) Jiang, D. L.; Zhao, H. J.; Zhang, S. Q.; Richard, J. J . Photochem. Photobiol. A -Chem. 2006, 177, 253.  

    3. [3]

      (3) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, Z. F. Acta Phys. -Chim. Sin. 2010, 26 (11), 2935. [张知宇, 桑丽霞, 孙彪, 张晓敏, 马重芳. 物理化学学报, 2010, 26 (11), 2935.]

    4. [4]

      (4) Yang, S. M.; Li, F. Y.; Huang, C. H. Chemistry 2002, No. 5, 292. [杨术明, 李富友, 黄春辉. 化学通报, 2002, No. 5, 292.]

    5. [5]

      (5) Cunningham, J.; Sedlak, P. J. Photochem. Photobiol. Part AChem. 1994, 77, 255.  

    6. [6]

      (6) Taborda, A. V.; Brusa, M. A.; Grela, M. A. Appl. Catal. Part AGen. 2001, 208, 419.

    7. [7]

      (7) Luo, Y.; Cui, X. L.; Xie, J. Y. Acta Phys. -Chim. Sin. 2011, 27 (1), 135. [罗英, 崔晓莉, 解晶莹. 物理化学学报, 2011, 27 (1), 135.]

    8. [8]

      (8) Tang, Y. X.; Tao, J.; Tao, H. J.;Wu, T.;Wang, L.; Zhang, Y. Y.; Li, Z. L.; Tian, X. L. Acta Phys. -Chim. Sin. 2008, 24 (6), 1120. [汤育欣, 陶杰, 陶海军, 吴涛, 王玲, 张焱焱, 李转利, 田西林. 物理化学学报, 2008, 24 (6), 1120.]

    9. [9]

      (9) Lai, Y. K.; Sun, L.; Zuo, J.; Lin, C. J. Acta Phys. -Chim. Sin. 2004, 20 (9), 1063. [赖跃坤, 孙岚, 左娟, 林昌健. 物理化学学报, 2004, 20 (9), 1063.]

    10. [10]

      (10) Yang, L.; He, D.; Cai, Q.; Grimes, C. A. J. Phys. Chem. C 2007, 111 (23), 8214.

    11. [11]

      (11) Liu, Y. B.; Gan, X. J.; Zhou, B. X.; Xiong, B. T.; Li, J. H.; Dong, C. P.; Bai, J.; Cai,W. M. J. Hazard. Mater. 2009, 171 (1-3), 678.

    12. [12]

      (12) Zhuang, H. F.; Lai, Y. K.; Li, J.; Sun, L.; Lin, C. J. Electrochemistry 2007, 13 (3), 284. [庄慧芳, 赖跃坤, 李静, 孙岚, 林昌健. 电化学, 2007, 13 (3), 284.]

    13. [13]

      (13) Chen, S. Y. Kinetics of Catalytic Reactions; Chemical Industry Press: Beijing, 2007; pp 15-20. [陈诵英. 催化反应动力学. 北京: 化学工业出版社, 2007; pp 15-20.]

    14. [14]

      (14) Zheng, Q.; Zhou, B. X.; Bai, J.; Li, L. H.; Jin, Z. J.; Zhang, J. L.; Li, J. H.; Liu, Y. B.; Cai,W. M.; Zhu, X. Y. Adv. Mater. 2008, 20, 1044.  

    15. [15]

      (15) Krysa, J.;Waldner, G.; Mest??nkova, H.; Jirkovsky, J.; Grabner, G. Appl. Catal. B 2006, 64 (3-4), 290.

    16. [16]

      (16) Lam, S.W.; Chiang, K.; Lim, T. M.; Amal, R.; Low, G. K. C. J. Photochem. Photobio. A- Chem. 2007, 187, 127.  

    17. [17]

      (17) Moser, J.; Punchihewa, S.; Infelta, P. P.; Gr?tzel, M. Langmuir 1991, 7, 3012.  

    18. [18]

      (18) ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.  

    19. [19]

      (19) Bai, J.; Zhou, B. X.; Li, J. H.; Zheng, Q.; Liu, Y. B.; Shao, J. H.; Zhu, X. Y.; Cai,W. M. J. Mater. Sci. 2008, 43, 1880.  

    20. [20]

      (20) Liu, B. C.; Li, J. H.; Zhou, B. X.; Zheng, Q.; Bai, J.; Zhang, J. L.; Liu, Y. B.; Cai,W. M. Chin. J. Catal. 2010, 31 (2), 163. [刘冰川, 李金花, 周保学, 郑青, 白晶, 张嘉凌, 刘艳彪, 蔡伟民. 催化学报, 2010, 31 (2), 163.]

  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(1234)
  • Abstract views(2478)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return