Citation: NIE Ping, SHEN Lai-Fa, CHEN Lin, SU Xiao-Fei, ZHANG Xiao-Gang, LI Hong-Sen. Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO4/MWCNT Composites[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2123-2128. doi: 10.3866/PKU.WHXB20110902
-
Porous LiMnPO4 and LiMnPO4/MWCNT (multi-walled carbon nanotube) composites were prepared using a citric acid assisted sol-gel method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms (BET), and transmission electron microscopy (TEM) were performed to characterize their morphologies and structures. The results indicated that fine-sized, well-crystallized olivine LiMnPO4 was synthesized. The interlaced carbon nanotube networks were intimately embedded and incorporated into the porous LiMnPO4 particle to form highlyconductive three-dimensional (3D) networks. The LiMnPO4 particle and LiMnPO4/MWCNT composite had rich hierarchical pores. A detailed analysis showed that the average pore size was in the mesoporous range and specific surface areas of 73.7 and 69.9 m2·g-1 were obtained, respectively. Compared with the LiMnPO4 particle the LiMnPO4/MWCNT composite exhibited much higher specific capacity. When discharged at a rate of 0.05C and 2C the capacities were 108.8 and 33.2 mAh·g-1, respectively. The MWCNT effectively improved the electronic conductivity of the hybrid materials as shown by electrochemical impedance spectroscopy (EIS). The improved electrochemical performance of the LiMnPO4/MWCNT electrode is attributed to the enhanced electrical conductivity caused by the tighter binding of the carbon nanotubes with the LiMnPO4 primary particles as well as by the interconnected open pores with a high surface area.
-
-
[1]
(1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
-
[2]
(2) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.;Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799.
-
[3]
(3) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260.
-
[4]
(4) Delacourt, C.; Laffont, L.; Bouchet, R.;Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masqueliera, C. J. Electrochem. Soc. 2005, 152, A913.
-
[5]
(5) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Peng,W. J.; Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.]
-
[6]
(6) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Amine, K.; Sun, Y. K. J. Power Sources 2011, 196, 6924.
-
[7]
(7) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.
-
[8]
(8) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.
-
[9]
(9) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A142.
-
[10]
(10) Oh, S. M.; Oh, S.W.; Myung, S. T.; Lee, S. M.; Sun, K. Y. J. Alloy. Compd. 2010, 506, 372.
-
[11]
(11) Hu, C. L.; Yi, H. H.; Fang, H. S; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. N. Electrochem. Commun. 2010, 12, 1784.
-
[12]
(12) Yi, H. H.; Hu, C. L.; Fang, H. S.; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. H. Electrochim. Acta 2011, 56, 4052.
-
[13]
(13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, No. 9, 1118.
-
[14]
(14) Fang, H. S.; Pan, Z. Y.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S.; Wei, S. Q. Electrochem. Commun. 2008, 10, 1071.
-
[15]
(15) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.
-
[16]
(16) Wang, D. Y.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N. H.; Miners, J. H.; Poletto, L.; Gr?tzel, M. J. Power Sources 2009, 189, 624.
-
[17]
(17) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Zhang, F. J. Mater. Chem. 2011, 21, 761.
-
[18]
(18) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 8258.
-
[19]
(19) Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; upil, J. M.; Pejovnik, S.; Jamnik, J. J. Power Sources 2006, 153, 274.
-
[20]
(20) Zhou, Y. K.;Wang, J.; Hu, Y. Y.; O'Hayre, R.; Shao, Z. P. Chem. Commun. 2010, 46, 7151.
-
[21]
(21) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. J. Mater. Chem. 2010, 20, 6998.
-
[22]
(22) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2011, 114, 3477.
-
[23]
(23) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609. [苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.]
-
[24]
(24) Zhang, X. B.; Chen, M. H.; Zhang, X. G.; Li, Q.W. Acta Phys. -Chim. Sin. 2010, 26, 3169. [张校菠, 陈名海, 张校刚, 李清文. 物理化学学报, 2010, 26, 3169.]
-
[25]
(25) Saravanan, K.; Vittal, J. J.; Reddy, M. V.; Chowdari, B. V. R.; Balaya, P. J. Solid State Electrochem. 2010, 14, 1755.
-
[26]
(26) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093.
-
[27]
(27) Rangappa, D.; Sone, K.; Ichihara, M.; Kudo, T.; Honma, I. Chem. Commun. 2010, 46, 7548.
-
[28]
(28) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. Nanoscale 2011, 3, 572.
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[10]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[11]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[13]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[14]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[15]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[16]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[17]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[18]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[19]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[20]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[1]
Metrics
- PDF Downloads(1836)
- Abstract views(3573)
- HTML views(52)