Citation:
XIA Hai-Ting, KUANG Xiao-Jun, WANG Chun-Hai, LI Wen-Xian, JING Xi-Ping, ZHAO Fei, YUE Zhen-Xing. Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics[J]. Acta Physico-Chimica Sinica,
;2011, 27(08): 2009-2014.
doi:
10.3866/PKU.WHXB20110839
-
Tungsten-bronze type titanate BaNd2Ti4O12 ceramics were synthesized by solid state reactions. The conductivity and microwave dielectric loss of the samples that were thermally treated under various conditions and Ta-doped were investigated by electrochemical impedance measurement and microwave dielectric resonator measurement. The variation in conductivity with annealing atmospheres of air, O2, and N2 was consistent with the defect equilibriums 2OO×↔2VO··+O2↑+2e' and TiTi×+e'↔Ti'Ti, suggesting n-type conductance for BaNd2Ti4O12. Thermal treatment in air/O2 was found to favor the elimination of the native defects VO×, Ti'Ti and weakly bound electrons thus decreasing the conductivity. Thermal treatment in a N2 atmosphere, which had a low oxygen partial pressure, increased the defect content and the conductivity. Thermal treatment in air/O2/N2 did not clearly affect the microwave dielectric loss, suggesting that native defects have negligible effects on this property. The air-annealed sample was found to have lower conductivity and lower microwave loss compared with the air-quenched sample. The change in conductivity was found to be related to the equilibrium of the native defects but the change in microwave dielectric loss might be explained by the release of thermally induced lattice strain. Ta doping reduced the conductivity but increased the microwave dielectric loss. This work shows that air-annealing may be an efficient way to improve the Q×f factor for BaNd2Ti4O12 ceramics, which was enhanced by ~12%.
-
Keywords:
-
Defect
, - Conductivity,
- Microwave dielectric loss,
- BaNd2Ti4O12,
- Tungsten-bronze
-
-
-
-
[1]
(1) Reaney, I. M.; Iddles, D. J. Am. Ceram. Soc. 2006, 89, 2063.
- [2]
-
[3]
(3) Wolfram, G.; bel, H. E. Mater. Res. Bull. 1981, 16, 1455.
-
[4]
(4) Negas, T.; Yeager, G.; Bell, S.; Coats, N.; Minis, I. Am. Ceram. Soc. Bull. 1993, 72, 80.
-
[5]
(5) Ohsato, H.; Kato, K.; Mizuta, M.; Nishigaki, S.; Okuda, T. Jpn. J. Appl. Phys. 1995, 34, 5413.
-
[6]
(6) Valant, M.; Suvorov, D.; Rawn, C. J. Jpn. J. Appl. Phys. 1999, 38, 2820.
- [7]
- [8]
-
[9]
(9) Nenasheva, E. A.; Mudroliubova, L. P.; Kartenko, N. F. J. Eur. Ceram. Soc. 2003, 23, 2443.
-
[10]
(10) Okawa, T.; Kiuchi, K.; Okabe, H.; Ohsato, H. Jpn. J. Appl. Phys. 2001, 40, 5779.
-
[11]
(11) Kuang, X.; Allix, M. M. B.; Claridge, J. B.; Niu, H. J.; Rosseinsky, M. J.; Ibberson, R. M.; Iddles, D. M. J. Mater. Chem. 2006, 16, 1038.
-
[12]
(12) Templeton, A.;Wang, X.; Penn, S. J.;Webb, S. J.; Cohen, L. F.; Alford, N. M. J. Am. Ceram. Soc. 2000, 83, 95.
-
[13]
(13) Lee, M. J.; Kim, C. Y.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 173.
-
[14]
(14) Lee, M. J.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 165.
-
[15]
(15) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241.
-
[16]
(16) Kuang, X.; Xia, H.; Liao, F.;Wang, C.; Li, L.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2007, 90, 3142.
-
[17]
(17) Hu, P.; Jiao, H.;Wang, C. H.;Wang, X. M.; Ye, S.; Jing, X. P.; Zhao, F.; Yue, Z. X. Mater. Sci. Eng. B 2011, 176, 401.
- [18]
-
[19]
(19) Kolar, D.; Gaberscek, S.; Volavsek, B.; Parker, H. S.; Roth, R. S. J. Solid State Chem. 1981, 38, 158.
-
[20]
(20) Takahashi, J.; Ikegami, T.; Kageyama, K. J. Am. Ceram. Soc. 1991, 74, 1873.
-
[21]
(21) Varfolomeev, M. B.; Mironov, A. S.; Kostomarov, V. S.; lubtsova, L. A.; Zolotova, T. A. Russ. J. Inorg. Chem. 1988, 33, 607.
-
[22]
(22) Ohsato, H.; Ohhashi, T.; Nishigaki, S.; Okuda, T.; Sumiya, K.; Suzuki, S. Jpn. J. Appl. Phys. 1993, 32, 4323.
-
[23]
(23) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402.
-
[24]
(24) Courtney,W. E. IEEE Trans. Microwave Theory Tech. 1970, 18, 476.
-
[25]
(25) Krupka, J.; Derzakowski, K.; Riddle, B.; Baker-Jarvis, J. Meas. Sci. Technol. 1998, 9, 1751.
-
[26]
(26) Irvine, J. T. S.; Sinclair, D. C.;West, A. R. Adv. Mater. 1990, 2, 132.
-
[27]
(27) Jing, X.;West, A. R. Acta. Phys.-Chim. Sin. 2003, 19, 109. [荆西平,West, A. R. 物理化学学报, 2003, 19, 109.]
-
[28]
(28) Yoo, S.; Yoon, K. H.; Choi, J.; Yoon, S. Jpn. J. Appl. Phys. 2004, 43, L343.
-
[29]
(29) Ferreira, V. M.; Baptista, J. L. J. Am. Ceram. Soc. 1996, 79, 1697.
-
[30]
(30) Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H. J. Am. Ceram. Soc. 1995, 78, 793.
-
[1]
-
-
-
[1]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[2]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[3]
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
-
[4]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[5]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[6]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[7]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[8]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[9]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[10]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[11]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[12]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[13]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[14]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[15]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[16]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[17]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[18]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[19]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[20]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[1]
Metrics
- PDF Downloads(903)
- Abstract views(2668)
- HTML views(35)