Citation: XIA Hai-Ting, KUANG Xiao-Jun, WANG Chun-Hai, LI Wen-Xian, JING Xi-Ping, ZHAO Fei, YUE Zhen-Xing. Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 2009-2014. doi: 10.3866/PKU.WHXB20110839 shu

Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics

  • Received Date: 29 April 2011
    Available Online: 28 June 2011

    Fund Project: 国家自然科学基金(20821091, 21071009, 20423005)资助项目 (20821091, 21071009, 20423005)

  • Tungsten-bronze type titanate BaNd2Ti4O12 ceramics were synthesized by solid state reactions. The conductivity and microwave dielectric loss of the samples that were thermally treated under various conditions and Ta-doped were investigated by electrochemical impedance measurement and microwave dielectric resonator measurement. The variation in conductivity with annealing atmospheres of air, O2, and N2 was consistent with the defect equilibriums 2OO×↔2VO··+O2↑+2e' and TiTi×+e'↔Ti'Ti, suggesting n-type conductance for BaNd2Ti4O12. Thermal treatment in air/O2 was found to favor the elimination of the native defects VO×, Ti'Ti and weakly bound electrons thus decreasing the conductivity. Thermal treatment in a N2 atmosphere, which had a low oxygen partial pressure, increased the defect content and the conductivity. Thermal treatment in air/O2/N2 did not clearly affect the microwave dielectric loss, suggesting that native defects have negligible effects on this property. The air-annealed sample was found to have lower conductivity and lower microwave loss compared with the air-quenched sample. The change in conductivity was found to be related to the equilibrium of the native defects but the change in microwave dielectric loss might be explained by the release of thermally induced lattice strain. Ta doping reduced the conductivity but increased the microwave dielectric loss. This work shows that air-annealing may be an efficient way to improve the Q×f factor for BaNd2Ti4O12 ceramics, which was enhanced by ~12%.

  • 加载中
    1. [1]

      (1) Reaney, I. M.; Iddles, D. J. Am. Ceram. Soc. 2006, 89, 2063.

    2. [2]

      (2) Cava, R. J. J. Mater. Chem. 2001, 11, 54.  

    3. [3]

      (3) Wolfram, G.; bel, H. E. Mater. Res. Bull. 1981, 16, 1455.  

    4. [4]

      (4) Negas, T.; Yeager, G.; Bell, S.; Coats, N.; Minis, I. Am. Ceram. Soc. Bull. 1993, 72, 80.

    5. [5]

      (5) Ohsato, H.; Kato, K.; Mizuta, M.; Nishigaki, S.; Okuda, T. Jpn. J. Appl. Phys. 1995, 34, 5413.

    6. [6]

      (6) Valant, M.; Suvorov, D.; Rawn, C. J. Jpn. J. Appl. Phys. 1999, 38, 2820.  

    7. [7]

      (7) Ohsato, H. J. Eur. Ceram. Soc. 2001, 21, 2703.  

    8. [8]

      (8) Wakino, K. Ferroelectrics 1989, 91, 69.  

    9. [9]

      (9) Nenasheva, E. A.; Mudroliubova, L. P.; Kartenko, N. F. J. Eur. Ceram. Soc. 2003, 23, 2443.

    10. [10]

      (10) Okawa, T.; Kiuchi, K.; Okabe, H.; Ohsato, H. Jpn. J. Appl. Phys. 2001, 40, 5779.  

    11. [11]

      (11) Kuang, X.; Allix, M. M. B.; Claridge, J. B.; Niu, H. J.; Rosseinsky, M. J.; Ibberson, R. M.; Iddles, D. M. J. Mater. Chem. 2006, 16, 1038.

    12. [12]

      (12) Templeton, A.;Wang, X.; Penn, S. J.;Webb, S. J.; Cohen, L. F.; Alford, N. M. J. Am. Ceram. Soc. 2000, 83, 95.  

    13. [13]

      (13) Lee, M. J.; Kim, C. Y.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 173.

    14. [14]

      (14) Lee, M. J.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 165.

    15. [15]

      (15) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241.  

    16. [16]

      (16) Kuang, X.; Xia, H.; Liao, F.;Wang, C.; Li, L.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2007, 90, 3142.  

    17. [17]

      (17) Hu, P.; Jiao, H.;Wang, C. H.;Wang, X. M.; Ye, S.; Jing, X. P.; Zhao, F.; Yue, Z. X. Mater. Sci. Eng. B 2011, 176, 401.  

    18. [18]

      (18) Ohsato, H. J. Ceram. Soc. Jpn. 2005, 113, 703.  

    19. [19]

      (19) Kolar, D.; Gaberscek, S.; Volavsek, B.; Parker, H. S.; Roth, R. S. J. Solid State Chem. 1981, 38, 158.  

    20. [20]

      (20) Takahashi, J.; Ikegami, T.; Kageyama, K. J. Am. Ceram. Soc. 1991, 74, 1873.  

    21. [21]

      (21) Varfolomeev, M. B.; Mironov, A. S.; Kostomarov, V. S.; lubtsova, L. A.; Zolotova, T. A. Russ. J. Inorg. Chem. 1988, 33, 607.

    22. [22]

      (22) Ohsato, H.; Ohhashi, T.; Nishigaki, S.; Okuda, T.; Sumiya, K.; Suzuki, S. Jpn. J. Appl. Phys. 1993, 32, 4323.  

    23. [23]

      (23) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402.  

    24. [24]

      (24) Courtney,W. E. IEEE Trans. Microwave Theory Tech. 1970, 18, 476.  

    25. [25]

      (25) Krupka, J.; Derzakowski, K.; Riddle, B.; Baker-Jarvis, J. Meas. Sci. Technol. 1998, 9, 1751.

    26. [26]

      (26) Irvine, J. T. S.; Sinclair, D. C.;West, A. R. Adv. Mater. 1990, 2, 132.  

    27. [27]

      (27) Jing, X.;West, A. R. Acta. Phys.-Chim. Sin. 2003, 19, 109. [荆西平,West, A. R. 物理化学学报, 2003, 19, 109.]

    28. [28]

      (28) Yoo, S.; Yoon, K. H.; Choi, J.; Yoon, S. Jpn. J. Appl. Phys. 2004, 43, L343.

    29. [29]

      (29) Ferreira, V. M.; Baptista, J. L. J. Am. Ceram. Soc. 1996, 79, 1697.  

    30. [30]

      (30) Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H. J. Am. Ceram. Soc. 1995, 78, 793.


  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(903)
  • Abstract views(2612)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return