Citation: XIA Hai-Ting, KUANG Xiao-Jun, WANG Chun-Hai, LI Wen-Xian, JING Xi-Ping, ZHAO Fei, YUE Zhen-Xing. Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 2009-2014. doi: 10.3866/PKU.WHXB20110839
-
Tungsten-bronze type titanate BaNd2Ti4O12 ceramics were synthesized by solid state reactions. The conductivity and microwave dielectric loss of the samples that were thermally treated under various conditions and Ta-doped were investigated by electrochemical impedance measurement and microwave dielectric resonator measurement. The variation in conductivity with annealing atmospheres of air, O2, and N2 was consistent with the defect equilibriums 2OO×↔2VO··+O2↑+2e' and TiTi×+e'↔Ti'Ti, suggesting n-type conductance for BaNd2Ti4O12. Thermal treatment in air/O2 was found to favor the elimination of the native defects VO×, Ti'Ti and weakly bound electrons thus decreasing the conductivity. Thermal treatment in a N2 atmosphere, which had a low oxygen partial pressure, increased the defect content and the conductivity. Thermal treatment in air/O2/N2 did not clearly affect the microwave dielectric loss, suggesting that native defects have negligible effects on this property. The air-annealed sample was found to have lower conductivity and lower microwave loss compared with the air-quenched sample. The change in conductivity was found to be related to the equilibrium of the native defects but the change in microwave dielectric loss might be explained by the release of thermally induced lattice strain. Ta doping reduced the conductivity but increased the microwave dielectric loss. This work shows that air-annealing may be an efficient way to improve the Q×f factor for BaNd2Ti4O12 ceramics, which was enhanced by ~12%.
-
Keywords:
-
Defect
, - Conductivity,
- Microwave dielectric loss,
- BaNd2Ti4O12,
- Tungsten-bronze
-
-
-
[1]
(1) Reaney, I. M.; Iddles, D. J. Am. Ceram. Soc. 2006, 89, 2063.
- [2]
-
[3]
(3) Wolfram, G.; bel, H. E. Mater. Res. Bull. 1981, 16, 1455.
-
[4]
(4) Negas, T.; Yeager, G.; Bell, S.; Coats, N.; Minis, I. Am. Ceram. Soc. Bull. 1993, 72, 80.
-
[5]
(5) Ohsato, H.; Kato, K.; Mizuta, M.; Nishigaki, S.; Okuda, T. Jpn. J. Appl. Phys. 1995, 34, 5413.
-
[6]
(6) Valant, M.; Suvorov, D.; Rawn, C. J. Jpn. J. Appl. Phys. 1999, 38, 2820.
- [7]
- [8]
-
[9]
(9) Nenasheva, E. A.; Mudroliubova, L. P.; Kartenko, N. F. J. Eur. Ceram. Soc. 2003, 23, 2443.
-
[10]
(10) Okawa, T.; Kiuchi, K.; Okabe, H.; Ohsato, H. Jpn. J. Appl. Phys. 2001, 40, 5779.
-
[11]
(11) Kuang, X.; Allix, M. M. B.; Claridge, J. B.; Niu, H. J.; Rosseinsky, M. J.; Ibberson, R. M.; Iddles, D. M. J. Mater. Chem. 2006, 16, 1038.
-
[12]
(12) Templeton, A.;Wang, X.; Penn, S. J.;Webb, S. J.; Cohen, L. F.; Alford, N. M. J. Am. Ceram. Soc. 2000, 83, 95.
-
[13]
(13) Lee, M. J.; Kim, C. Y.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 173.
-
[14]
(14) Lee, M. J.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 165.
-
[15]
(15) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241.
-
[16]
(16) Kuang, X.; Xia, H.; Liao, F.;Wang, C.; Li, L.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2007, 90, 3142.
-
[17]
(17) Hu, P.; Jiao, H.;Wang, C. H.;Wang, X. M.; Ye, S.; Jing, X. P.; Zhao, F.; Yue, Z. X. Mater. Sci. Eng. B 2011, 176, 401.
- [18]
-
[19]
(19) Kolar, D.; Gaberscek, S.; Volavsek, B.; Parker, H. S.; Roth, R. S. J. Solid State Chem. 1981, 38, 158.
-
[20]
(20) Takahashi, J.; Ikegami, T.; Kageyama, K. J. Am. Ceram. Soc. 1991, 74, 1873.
-
[21]
(21) Varfolomeev, M. B.; Mironov, A. S.; Kostomarov, V. S.; lubtsova, L. A.; Zolotova, T. A. Russ. J. Inorg. Chem. 1988, 33, 607.
-
[22]
(22) Ohsato, H.; Ohhashi, T.; Nishigaki, S.; Okuda, T.; Sumiya, K.; Suzuki, S. Jpn. J. Appl. Phys. 1993, 32, 4323.
-
[23]
(23) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402.
-
[24]
(24) Courtney,W. E. IEEE Trans. Microwave Theory Tech. 1970, 18, 476.
-
[25]
(25) Krupka, J.; Derzakowski, K.; Riddle, B.; Baker-Jarvis, J. Meas. Sci. Technol. 1998, 9, 1751.
-
[26]
(26) Irvine, J. T. S.; Sinclair, D. C.;West, A. R. Adv. Mater. 1990, 2, 132.
-
[27]
(27) Jing, X.;West, A. R. Acta. Phys.-Chim. Sin. 2003, 19, 109. [荆西平,West, A. R. 物理化学学报, 2003, 19, 109.]
-
[28]
(28) Yoo, S.; Yoon, K. H.; Choi, J.; Yoon, S. Jpn. J. Appl. Phys. 2004, 43, L343.
-
[29]
(29) Ferreira, V. M.; Baptista, J. L. J. Am. Ceram. Soc. 1996, 79, 1697.
-
[30]
(30) Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H. J. Am. Ceram. Soc. 1995, 78, 793.
-
[1]
-
-
[1]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[2]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[3]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[4]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[5]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[6]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[7]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[8]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[9]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[10]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[11]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[12]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[13]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[14]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[15]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[16]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[19]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[20]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[1]
Metrics
- PDF Downloads(903)
- Abstract views(2612)
- HTML views(28)