Citation: YUAN Wen-Hui, LI Bao-Qing, LI Li. Superior Graphene for Hydrogen Adsorption Prepared by the Improved Liquid Oxidation-Reduction Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2244-2250. doi: 10.3866/PKU.WHXB20110838 shu

Superior Graphene for Hydrogen Adsorption Prepared by the Improved Liquid Oxidation-Reduction Method

  • Received Date: 7 April 2011
    Available Online: 28 June 2011

    Fund Project: 国家自然科学基金(20976057)资助项目 (20976057)

  • Graphite oxide ( ) was prepared from liquid oxidation based on Hummers method and the graphene was then prepared using sodium borohydride to reduce the exfoliated graphite oxide by ultrasonication during which moderate sodium dodecyl benzene sulfonate (SDBS) was added into the suspension to reduce the agglomeration among the graphene layers and to obtain a stable graphene suspension. The as-prepared graphene was characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). XRD results show that the crystal structures are different among graphite, graphite oxide, and graphene. SEM and TEM images show that graphene possesses a gridding structure, a smooth surface, and few defects. AFM analysis indicates that the thickness of the single layer graphene is about 1.3 nm while there are still a few double layers in the sample. The BET specific surface area of the graphene was about 1206 m2·g-1 and its H2 adsorption properties were investigated under high pressure. The samples prepared by liquid oxidation-reduction were compared with that prepared by the improved liquid oxidation-reduction method, which indicates that the addition of SDBS effectively reduces agglomeration among the graphene layers and this generates high quality graphene. The adsorption capacities of H2 on graphene at 25 and 55 °C reached 1.7%(w) and 1.1%(w), respectively, which are much higher than that reported previously.
  • 加载中
    1. [1]

      (1) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Energy and Fuels 2005, 19 (5), 2098.

    2. [2]

      (2) Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Energy 2008, 33 (4), 554.

    3. [3]

      (3) Rosen, M. A. Energy 2010, 35, 1068.  

    4. [4]

      (4) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377.  

    5. [5]

      (5) Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127.  

    6. [6]

      (6) Zhou, L.; Zhou, Y. P.; Sun, Y. Int. J. Hydrog. Energy 2004, 29 (5), 475.

    7. [7]

      (7) Fan, Y. Y.; Liao, B.; Liu, M.;Wei, Y. L.; Lu, M. Q.; Cheng, H. M. Carbon 1999, 37, 1649.  

    8. [8]

      (8) Gupta, B. K.; Srivastava, O. N. Int. J. Hydrog. Energy 2001, 26, 857.  

    9. [9]

      (9) Zhou, L.; Zhou, Y. P.; Sun, Y. Int. J. Hydrog. Energy 2004, 29 (3), 319.

    10. [10]

      (10) Huang, G. R.; Chen, J. Carbon Technologies 2009, 1 (28), 35.

    11. [11]

      (11) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    12. [12]

      (12) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  

    13. [13]

      (13) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498.

    14. [14]

      (14) Yang, N.; Zhai, J.;Wang, D.; Chen, Y.; Jiang, L. ACS Nano 2010, 4, 887.  

    15. [15]

      (15) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.]

    16. [16]

      (16) Sridhar, V.; Jeon, J. H.; Oh, I. K. Carbon 2010, 48(10), 2953.

    17. [17]

      (17) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26 (6), 1570.]

    18. [18]

      (18) Wu, X. Q.; Zong, R. L.; Mou, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26 (11), 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26 (11), 3002.]

    19. [19]

      (19) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4), 858.]

    20. [20]

      (20) Srinivas, G.; Zhu, Y.W.; Piner, R.; Skipper, R.; Ellerby, M.; Ruoff, R. Carbon 2010, 48 (3), 630.

    21. [21]

      (21) Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; vindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 15704.  

    22. [22]

      (22) Ma, L. P.;Wu, Z. S.; Li, J.;Wu, E. D.; Ren,W. C.; Cheng, H. M. Hydrogen Energy 2009, 34 (5), 2329.

    23. [23]

      (23) Bourlinos, A. B.; urnis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050.  

    24. [24]

      (24) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.  

    25. [25]

      (25) Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. ACS Nano 2010, 4 (6), 3155.

    26. [26]

      (26) Xu, Y. X.; Bai, H.; Lu, G.W.; Li, C.; Shi, G. Q. J. Am. Chem. Soc. 2008, 130 (18), 5856.

    27. [27]

      (27) Hummers, S.; Offeman, R. J. Am. Chem. Soc. 1958, 80 (6), 1339.

    28. [28]

      (28) Wang, J.; Han, Z. D. Polym. Adv. Technol. 2006, 17 (4), 335.

    29. [29]

      (29) Lee, S.; Lim, S.; Lim, E.; Lee, K. K. Journal of Physics and Chemistry of Solids 2010, 71 (4), 483.

    30. [30]

      (30) Ferrari, A. C.; Robertson, J. J. Phys. Rev. B 2000, 61 (20),14095.

    31. [31]

      (31) mez-Navarro, C.;Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7 (11), 3499.

    32. [32]

      (32) Jung, I.; Pelton, M.; Piner, R.; Dikin, D.A.; Stankovich, S.; Watcharotone, S. Nano. Lett. 2007, 7 (12), 3569.

    33. [33]

      (33) Szabo, T.; Berkesi, O.; Dekany, I. Carbon 2005, 43 (15), 3186.

    34. [34]

      (34) Jhi, S. H.; Kwon, Y. K.; Bradley, K. P.; Gabriel, J. C. Solid State Communications 2004, 129, 769.  

    35. [35]

      (35) Gigras, A.; Bhatia, S. K.; Anil Kumar, A.V.; Myers, A. L. Carbon 2007, 45 (5), 1043.

    36. [36]

      (36) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22 (4), 1688.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    10. [10]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    11. [11]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(2118)
  • Abstract views(3473)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return