Citation: TONG Xin, CHEN Rui, CHEN Tie-Hong. Photocatalytic Activity of TiO2 with Micrometer-Sized Macropores[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1941-1946. doi: 10.3866/PKU.WHXB20110836 shu

Photocatalytic Activity of TiO2 with Micrometer-Sized Macropores

  • Received Date: 17 March 2011
    Available Online: 28 June 2011

    Fund Project: 国家自然科学基金(20873070, 20973095)资助项目 (20873070, 20973095)

  • Macroporous TiO2 with aligned channels was synthesized using citric acid as a chelator. The wall of the macropore was composed of nanosized anatase crystals. The degradation of rhodamine B (RhB) was used as a model reaction to test the photocatalytic activity of the samples. Compared with ground TiO2 powder, macroporous TiO2 with aligned channels did not give a better photocatalytic RhB degradation property. Because of the scattering of UV-light by anatase nanoparticles, the TiO2 located inside the macroporous wall was not irradiated by UV-light, and this affected the photocatalytic property of the macroporous TiO2. The photocatalytic property improved upon exposing more of the external TiO2 surface to UV light. Furthermore, uniform and dispersed micrometer sized TiO2 spheres were fabricated using cetyltriethylammonium bromide (CTAB) and polyacrylic acid (PAA) as templates. The photocatalytic degradation of RhB confirmed that reducing the particle size improved the efficiency of the photocatalytic activity.

  • 加载中
    1. [1]

      (1) Shibata, N.; to, A.; Choi, S. Y.; Mizoguchi, T.; Findlay, S. D.; Yamamoto, T.; Ikuhara, Y. Science 2008, 5901, 570.

    2. [2]

      (2) Hardi, M. D.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.  

    3. [3]

      (3) Gutierrez, J.; Tercjak, A.; Mondra , I. J. Am. Chem. Soc. 2010, 132, 873.  

    4. [4]

      (4) Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301.  

    5. [5]

      (5) Li, G. R.;Wang, F.; Jiang, Q.W.; Gao, X. P.; She, P.W. Angew. Chem. Int. Edit. 2010, 122, 3735.

    6. [6]

      (6) Zhang, X. R.; Lin, Y. H.; Zhang, J. F.; He, D. Q.;Wang, D. J. Acta Phys. -Chim. Sin. 2010, 26, 2733. [张晓茹, 林艳红, 张健 夫, 何冬青, 王德军. 物理化学学报, 2010, 26, 2733.]

    7. [7]

      (7) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    8. [8]

      (8) Wang, M. Y.;Wang, C. L.; Xie, K. P.; Sun, L.; Lin, C. J. Acta Phys. -Chim. Sin. 2009, 25, 2475. [王梦晔, 王成林, 谢鲲鹏, 孙岚, 林昌健. 物理化学学报, 2009, 25, 2475.]

    9. [9]

      (9) Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S.; Kim, M.; Hwang, C. S. Nature Nanotech. 2010, 5, 148.  

    10. [10]

      (10) Jung, H. S.; Lee, J. K.; Lee, J.; Kang, B. S.; Jia, Q. X.; Nastasi, M.; Noh, J. H.; Cho, C. M.; Yoon, S. H. Langmuir 2008, 24, 2695.  

    11. [11]

      (11) Xie, T. H.; Lin, J. J. Phys. Chem. C 2007, 111, 9968.  

    12. [12]

      (12) Suwanchawalit, C.; Patil, A. J.; Kumar, R. K.;Wongnawa, S.; Mann, S. J. Mater. Chem. 2009, 19, 8478.  

    13. [13]

      (13) Torimoto, T.; Nakamura, N.; Ikeda, S.; Ohtani, B. Phys. Chem. Chem. Phys. 2002, 4, 5910.  

    14. [14]

      (14) Kandiel, T. A.; Dillert, R.; Feldhoff, A.; Bahnemann, D.W. J. Phys. Chem. C 2010, 114, 4909.  

    15. [15]

      (15) Meulen, T. V. D.; Mattson, A.; ?sterlund, L. J. Catal. 2007, 251, 131.  

    16. [16]

      (16) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.  

    17. [17]

      (17) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nature Mater. 2009, 8, 585.  

    18. [18]

      (18) Zhao,W.; Ma,W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782.  

    19. [19]

      (19) Chen, X. B.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018.  

    20. [20]

      (20) Xu,W. Q.; He, H.; Yu, Y. B. J. Phys. Chem. C 2009, 113, 4426.  

    21. [21]

      (21) Kim, S. H.; Cho, Y. S.; Jeon, S. J.; Eun, T. H.; Yi, G. R.; Yang, S. M. Adv. Mater. 2008, 20, 3268.  

    22. [22]

      (22) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406.  

    23. [23]

      (23) Song, X. F.; Gao, L. J. Phys. Chen. C 2007, 111, 8180.  

    24. [24]

      (24) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Thampi, R.; Durrant, M. G. J. R. J. Am. Chem. Soc. 2004, 126, 5670.  

    25. [25]

      (25) Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Adv. Funct. Mater. 2006, 16, 1067.  

    26. [26]

      (26) Yu, J. G.; Su, Y. R.; Cheng, B. Adv. Funct. Mater. 2007, 17, 1984.  

    27. [27]

      (27) Li, X.C.; John, V. T.; He, G. H.; Zhan, J. J.; Tan, G.; Mcpherson, G.; Bose, A.; Sarkar, J. Langmuir 2009, 25, 7586.


  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    18. [18]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

Metrics
  • PDF Downloads(1248)
  • Abstract views(3151)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return