Citation: KHAN Abbul Bashar, NAQVI Andleeb Z.. Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1900-1906. doi: 10.3866/PKU.WHXB20110817 shu

Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium

  • Received Date: 22 March 2011
    Available Online: 20 June 2011

    Fund Project: The project was supported by Department of Science and Technology's Science and Engineering Research Council Scheme of India (SR/FTP/CS-49/2007) for NAQVI Andleeb Z. and fellowship of University Grant Commission of India for KHAN Abbul Bashar. (SR/FTP/CS-49/2007)

  • The behavior of the mixed amphiphilic drug promethazine hydrochloride (PMT) and cationic as well as nonionic surfactants was studied by tensiometry. The cmc values of the PMT-surfactant systems decrease at a surfactant mole fraction of 0.1 and it then becomes constant. The critical micelle concentration (cmc) values are lower than the ideal cmc (cmc*) values for PMT/TX-100, PMT/TX-114, PMT/Tween 20, and PMT/Tween 60 systems. For the PMT/Tween 40, PMT/Tween 80, PMT/CPC, and PMT/CPB systems the cmc values are close to the cmc* values. This indicates that PMT forms mixed micelles with these surfactants by attractive interactions. The surface excess (Γmax) decreases in the presence of surfactants. The rigid structure of the drug makes adsorption easier and the contribution of the surfactant at the interface decreases. The interaction parameters βm (for the mixed micelles) and βσ (for the mixed monolayer) are negative indicating attraction among the mixed components.

  • 加载中
    1. [1]

      (1) Zhu, D.; Zhao, G. Colloids Surf. 1990, 49, 269.  

    2. [2]

      (2) Li, X.; Zhao, G. Colloids Surf. 1992, 64, 185.  

    3. [3]

      (3) Yu, Z.; Zhang, X.; Xu, G.; Zhao, G. J. Phys. Chem. 1990, 94, 3675.  

    4. [4]

      (4) Hines, J. D.; Thomas, R. K.; Garrett, P. R.; Rennie, G. K.; Penfold, J. J. Phys. Chem. B 1997, 101, 9215.  

    5. [5]

      (5) Shilaoch, A.; Blankschtein, D. Langmuir 1998, 14, 7166.  

    6. [6]

      (6) Fontan, J. E.; Arnaud, P.; Chaumel, J. C. Int. J. Pharm. 1991, 73, 17.  

    7. [7]

      (7) Sjokvist, E.; Nystorm, C.; Alden, M.; Carram-Lelham, N. Int. J. Pharm. 1992, 79, 123.  

    8. [8]

      (8) Florence, A. T. Techniques of Solubulization of Drugs; Yalkowsky, S. H. Ed.; Marcel Dekker, Inc.: New York, 1981.

    9. [9]

      (9) Fahelebom, K. M. S.; Timoney, R. F.; Carrigan, O. I. Pharm. Res. 1993, 10, 631.

    10. [10]

      (10) Lundberg, B. J. Pharm. Sci. 1994, 83, 72.  

    11. [11]

      (11) Paulsson, M.; Edsman, K. Pharm. Res. 2001, 18, 1586.  

    12. [12]

      (12) Bhatt, P. A.; Dar, A. A.; Rather, G. M. J. Chem. Eng. Data 2008, 53, 1271.  

    13. [13]

      (13) Attwood, D.; Florence, A. T. Surfactant Systems; Chapman and Hall: New York, 1983.

    14. [14]

      (14) Cheema, M. A.; Siddiq, M.; Barbosa, S.; Castro, E.; Egea, J. A.; Antelo, L. T.; Taboada, P.; Mosquera, V. Chemical Physics 2007, 336, 157.  

    15. [15]

      (15) Cid, E. Pharma. Acta. Helv. 1971, 46, 377.

    16. [16]

      (16) Taboada, P.; Atwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Phys. Chem. Chem. Phys. 2000, 2, 5175.

    17. [17]

      (17) Katsung, B. G. Basic and Chemical Pharmacology, 9th ed.; McGraw Hill: New York, 2004.

    18. [18]

      (18) Yeom, I. T.; Ghosh, M. M.; Cox, C. D.; Robinson, K. G. Environ. Sci. Technol. 1995, 29, 3015.  

    19. [19]

      (19) Traguer, D.; Csordas, A. Biochem. J., 1987, 244, 605.

    20. [20]

      (20) Acharya, K. R.; Bhattacharyya, S. C.; Moulik, S. P. J. Photochem. Photobiol. A: Chemistry 1999, 122, 47.  

    21. [21]

      (21) Mukherjee, P.; Mysels, K. J. Critical Micelle Concentration of Aqueous Surfactant Systems; NSRDS-NBS 36: Washington, D. C., 1971.

    22. [22]

      (22) Mukherjee, P. Adv. Colloid Interface Sci. 1967, 1, 242.  

    23. [23]

      (23) Rubingh, D. N. Solution Chemistry of Surfactants; Mittal, K. L. Ed.; Plenum: New York, 1979.

    24. [24]

      (24) Rosen, M. J., Surfactants and Interfacial Phenomena;Wiley-Interscience: New York, 2004.

    25. [25]

      (25) Hua, X. Y.; Rosen, M. J. J. Colloid Interface Sci. 1982, 87, 469.  

    26. [26]

      (26) Rosen, M. J.; Aronson, S. Colloids Surf. 1981, 3, 201.  

    27. [27]

      (27) Sugihara, G.; Miyazono, A. M.; Nagadome, S.; Oida, T.; Hayashi, Y.; Ko, J. S. J. Oleo Sci. 2003, 52, 449.  


  • 加载中
    1. [1]

      Yan ZouYuting XueChenxue DuWenyang FuBin XiaYu HeLiang AoXiaoshu LvGuangming Jiang . Anhydrous sodium sulfate microparticles for efficient water separation from surfactant-stabilized water-in-oil emulsions. Chinese Chemical Letters, 2025, 36(11): 110814-. doi: 10.1016/j.cclet.2025.110814

    2. [2]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    3. [3]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    4. [4]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    5. [5]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    6. [6]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    7. [7]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    10. [10]

      Shanshan Yan Sihai Sun Zhiwu Chen Xin Wang . Improved photocatalytic activity of SrBi2Nb2O9 for the degradation of ciprofloxacin hydrochloride via piezoelectric-enhanced charge transfer. Chinese Journal of Structural Chemistry, 2025, 44(5): 100569-100569. doi: 10.1016/j.cjsc.2025.100569

    11. [11]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    12. [12]

      Wenya ChiRuiyao LiuWenbo ZhouWeilin LiYuan Yu . The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters, 2025, 36(8): 110587-. doi: 10.1016/j.cclet.2024.110587

    13. [13]

      Jinchen LiTangxin XiaoKai DiaoZhouyu WangLeyong Wang . Supramolecular catalysis enabled by chiral molecular cages with anion-π interaction capability. Chinese Chemical Letters, 2026, 37(1): 111796-. doi: 10.1016/j.cclet.2025.111796

    14. [14]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    15. [15]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    16. [16]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    17. [17]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    18. [18]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    19. [19]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    20. [20]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

Metrics
  • PDF Downloads(993)
  • Abstract views(2173)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return