Citation: KHAN Abbul Bashar, NAQVI Andleeb Z.. Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1900-1906. doi: 10.3866/PKU.WHXB20110817 shu

Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium

  • Received Date: 22 March 2011
    Available Online: 20 June 2011

    Fund Project: The project was supported by Department of Science and Technology's Science and Engineering Research Council Scheme of India (SR/FTP/CS-49/2007) for NAQVI Andleeb Z. and fellowship of University Grant Commission of India for KHAN Abbul Bashar. (SR/FTP/CS-49/2007)

  • The behavior of the mixed amphiphilic drug promethazine hydrochloride (PMT) and cationic as well as nonionic surfactants was studied by tensiometry. The cmc values of the PMT-surfactant systems decrease at a surfactant mole fraction of 0.1 and it then becomes constant. The critical micelle concentration (cmc) values are lower than the ideal cmc (cmc*) values for PMT/TX-100, PMT/TX-114, PMT/Tween 20, and PMT/Tween 60 systems. For the PMT/Tween 40, PMT/Tween 80, PMT/CPC, and PMT/CPB systems the cmc values are close to the cmc* values. This indicates that PMT forms mixed micelles with these surfactants by attractive interactions. The surface excess (Γmax) decreases in the presence of surfactants. The rigid structure of the drug makes adsorption easier and the contribution of the surfactant at the interface decreases. The interaction parameters βm (for the mixed micelles) and βσ (for the mixed monolayer) are negative indicating attraction among the mixed components.

  • 加载中
    1. [1]

      (1) Zhu, D.; Zhao, G. Colloids Surf. 1990, 49, 269.  

    2. [2]

      (2) Li, X.; Zhao, G. Colloids Surf. 1992, 64, 185.  

    3. [3]

      (3) Yu, Z.; Zhang, X.; Xu, G.; Zhao, G. J. Phys. Chem. 1990, 94, 3675.  

    4. [4]

      (4) Hines, J. D.; Thomas, R. K.; Garrett, P. R.; Rennie, G. K.; Penfold, J. J. Phys. Chem. B 1997, 101, 9215.  

    5. [5]

      (5) Shilaoch, A.; Blankschtein, D. Langmuir 1998, 14, 7166.  

    6. [6]

      (6) Fontan, J. E.; Arnaud, P.; Chaumel, J. C. Int. J. Pharm. 1991, 73, 17.  

    7. [7]

      (7) Sjokvist, E.; Nystorm, C.; Alden, M.; Carram-Lelham, N. Int. J. Pharm. 1992, 79, 123.  

    8. [8]

      (8) Florence, A. T. Techniques of Solubulization of Drugs; Yalkowsky, S. H. Ed.; Marcel Dekker, Inc.: New York, 1981.

    9. [9]

      (9) Fahelebom, K. M. S.; Timoney, R. F.; Carrigan, O. I. Pharm. Res. 1993, 10, 631.

    10. [10]

      (10) Lundberg, B. J. Pharm. Sci. 1994, 83, 72.  

    11. [11]

      (11) Paulsson, M.; Edsman, K. Pharm. Res. 2001, 18, 1586.  

    12. [12]

      (12) Bhatt, P. A.; Dar, A. A.; Rather, G. M. J. Chem. Eng. Data 2008, 53, 1271.  

    13. [13]

      (13) Attwood, D.; Florence, A. T. Surfactant Systems; Chapman and Hall: New York, 1983.

    14. [14]

      (14) Cheema, M. A.; Siddiq, M.; Barbosa, S.; Castro, E.; Egea, J. A.; Antelo, L. T.; Taboada, P.; Mosquera, V. Chemical Physics 2007, 336, 157.  

    15. [15]

      (15) Cid, E. Pharma. Acta. Helv. 1971, 46, 377.

    16. [16]

      (16) Taboada, P.; Atwood, D.; Ruso, J. M.; Garcia, M.; Mosquera, V. Phys. Chem. Chem. Phys. 2000, 2, 5175.

    17. [17]

      (17) Katsung, B. G. Basic and Chemical Pharmacology, 9th ed.; McGraw Hill: New York, 2004.

    18. [18]

      (18) Yeom, I. T.; Ghosh, M. M.; Cox, C. D.; Robinson, K. G. Environ. Sci. Technol. 1995, 29, 3015.  

    19. [19]

      (19) Traguer, D.; Csordas, A. Biochem. J., 1987, 244, 605.

    20. [20]

      (20) Acharya, K. R.; Bhattacharyya, S. C.; Moulik, S. P. J. Photochem. Photobiol. A: Chemistry 1999, 122, 47.  

    21. [21]

      (21) Mukherjee, P.; Mysels, K. J. Critical Micelle Concentration of Aqueous Surfactant Systems; NSRDS-NBS 36: Washington, D. C., 1971.

    22. [22]

      (22) Mukherjee, P. Adv. Colloid Interface Sci. 1967, 1, 242.  

    23. [23]

      (23) Rubingh, D. N. Solution Chemistry of Surfactants; Mittal, K. L. Ed.; Plenum: New York, 1979.

    24. [24]

      (24) Rosen, M. J., Surfactants and Interfacial Phenomena;Wiley-Interscience: New York, 2004.

    25. [25]

      (25) Hua, X. Y.; Rosen, M. J. J. Colloid Interface Sci. 1982, 87, 469.  

    26. [26]

      (26) Rosen, M. J.; Aronson, S. Colloids Surf. 1981, 3, 201.  

    27. [27]

      (27) Sugihara, G.; Miyazono, A. M.; Nagadome, S.; Oida, T.; Hayashi, Y.; Ko, J. S. J. Oleo Sci. 2003, 52, 449.  


  • 加载中
    1. [1]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    2. [2]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    5. [5]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    6. [6]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    7. [7]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    8. [8]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

Metrics
  • PDF Downloads(993)
  • Abstract views(1833)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return