Citation:
YAO Shu-Juan, SHAO Xin, CUI Shou-Xin, ZHAO Jian-Wei, ZHOU Cheng-Gang. Adsorption and Migration of Pt Atoms on γ-Al2O3(001) Surface[J]. Acta Physico-Chimica Sinica,
;2011, 27(08): 1816-1822.
doi:
10.3866/PKU.WHXB20110814
-
We present a systematic study using density functional theory (DFT) with the generalized gradient approximation (GGA) method to understand the adsorption and migration of Pt atoms on the γ-Al2O3(001) surface. Energetically the most favorable adsorption sites were identified and all these adsorption configurations were found to show substantial structural relaxation. Our calculated adsorption and energy barrier of migration results indicate that the Pt clusters can be stably anchored onto the surface. A significantly higher adsorption energy at the O site is largely attributed to the fact that charge transfer from Pt to O atoms results in positively charged Pt atoms. The repulsion between Pt and Al atoms leads to much weaker bonds. The calculated average adsorption energies were found to be size and shape dependent and in general decrease as the number of Pt atoms increases. The highest energy barrier for Pt atom migration on the γ-Al2O3(001) surface is about 0.51 eV. The formation of a metal cluster would be strongly preferred upon high Pt atom loading. Consequently, the evolution of Pt atoms on the γ-Al2O3(001) surface is unlikely to be smooth and agglomeration can occur under certain conditions.
-
-
-
[1]
(1) Wallin, M.; Gronbeck, H.; Spetz, A. L.; Eriksson, M.; Skoglundh, M. J. Phys. Chem. B 2005, 109 (19), 9581.
-
[2]
(2) Sun, M.; Croiset, E. B.; Hudgins, R. R.; Silveston, P. L.; Menzinger, M. Ind. Eng. Chem. Res. 2003, 42 (1), 37.
-
[3]
(3) Olsson, L.;Westerberg, B.; Persson, H.; Fridell, E.; Skoglundh, M.; Andersson, B. J. Phys. Chem. B 1999, 103 (47), 10433.
-
[4]
(4) N , L. T.; Xu, L.; Grant, A.W.; Campbell, C. T. J. Phys. Chem. B 2003, 107 (5), 1174.
-
[5]
(5) Xu, G.; Zhang, Z. G. J. Power Sources 2006, 157 (1), 64.
-
[6]
(6) Hoang-Van, C.; Zegaoui, O. Appl. Catal. A-Gen., 1995, 130, 89.
-
[7]
(7) Petersson, M.; Jonsson, D.; Persson, H.; Cruise, N.; Andersson, B. J. Catal. 2006, 238 (2), 321.
-
[8]
(8) Bai, Y.; Lu, C.; Ma, L.; Chen, P.; Zheng, Y.; Li, X. Chin. J. Catal. 2006, 27, 275. [白赢, 卢春山, 马磊, 陈萍, 郑遗凡, 李小年. 催化学报, 2006, 27, 275.]
-
[9]
(9) Kim, D. H.; Lim, M. S. Appl. Catal. A-Gen. 2002, 224 (1-2), 27.
-
[10]
(10) Wang, X. L.; Pan, X. M.; Lin, R.; Kou, S. Y.; Zou,W. B.; Ma, J. X. Acta Phys. -Chim. Sin. 2010, 26, 1296. [王晓蕾, 潘相敏, 林瑞, 寇素原, 邹卫兵, 马建新. 物理化学学报, 2010, 26, 1296.]
-
[11]
(11) Márquez, A. M.; Sanz, J. F. Appl. Surf. Sci. 2004, 238 (1-4), 82.
-
[12]
(12) Kang, J. H.; Menard, L. D.; Nuzzo, R. G.; Frenkel, A. I. J. Am. Chem. Soc. 2006, 128 (37), 12068.
-
[13]
(13) Zhou, C.;Wu, J.; Kumar, T. J. D.; Balakrishnan, N.; Forrey, R. C.; Cheng, H. J. Phys. Chem. C 2007, 111 (37), 13786.
-
[14]
(14) Ishimoto, R.; Jung, C.; Tsuboi, H.; Koyama, M.; Endou, A.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A. Appl. Catal. A-Gen. 2006, 305 (1), 64.
-
[15]
(15) Valentino, R. C.; Alexie, M. K.; Yashar, Y.; Andrew, M. R. Phys. Rev. B 2005, 72 (8), 081409.
-
[16]
(16) Shang, C.; Liu, Z. P. J. Phys. Chem. C 2010, 114 (40),16989.
-
[17]
(17) Liu, Z. P.;Wang, C. M.; Fan, K. N. Angew. Chem. Int. Edit. 2006, 45 (41), 6865.
-
[18]
(18) Wang, C. M.; Fan, K. N.; Liu, Z. P. J. Am. Chem. Soc. 2007, 129 (9), 2642.
-
[19]
(19) Tang, Q. L.; Liu, Z. P. J. Phys. Chem. C 2010, 114 (18), 8423.
-
[20]
(20) Meier, D. C.; odman, D.W. J. Am. Chem. Soc. 2004, 126 (6), 1892.
- [21]
- [22]
-
[23]
(23) Xu, L.; Henkelman, G.; Campbell, C. T.; Jónsson, H. Surf. Sci. 2006, 600 (6), 351.
-
[24]
(24) Gómez, T.; Florez, E.; Rodriguez, J. A.; Illas, F. J. Phys. Chem. C 2009, 114 (3), 1622.
-
[25]
(25) Segall, M. D.; et al. J. Phys.-Condens. Matter 2002, 14 (11), 2717.
-
[26]
(26) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64 (4), 1045.
-
[27]
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758.
-
[28]
(28) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188.
- [29]
-
[30]
(30) Li, Y. N.; Lü, Y.; Zhou, L. C.; Chen, L.; Li, S. M. Acta Phys. Chim. Sin., 2010, 26, 2793. [李亚娜, 吕洋, 周立川, 陈理, 李慎敏. 物理化学学报, 2010, 26, 2793.]
-
[31]
(31) Halgren, T. A.; Lipscomb,W. N. Chem. Phys. Lett. 1977, 49 (2), 225.
-
[32]
(32) Liu, L. M.; et al. J. Phys.: Condens. Matter 2003, 15 (47), 8103.
-
[33]
(33) Zhang, J. J.; Zhang, H. Acta Phys. Sin. 2010, 59, 4143. [张建军, 张红. 物理学报, 2010, 59: 4143.]
-
[34]
(34) Kittel, C. In Introduction to Solid State Physics, 7th ed.; John Wiley: New York, 1996; p176.
-
[35]
(35) Gupta, S. K.; Nappi, B. M.; Gingerich, K. A. Inorg. Chem. 1981, 20 (4), 966.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[7]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[8]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[9]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[10]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[11]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[12]
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
-
[13]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[14]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[15]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[16]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[17]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[18]
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
-
[19]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[20]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[1]
Metrics
- PDF Downloads(1450)
- Abstract views(2982)
- HTML views(41)