Citation: WANG Xi-Zhao, FU Rong, ZHENG Jun-Sheng, Ma Jian-Xin. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1875-1880. doi: 10.3866/PKU.WHXB20110813
-
Pt nanoparticles supported on carbon nanofibers (Pt/CNFs) with different microstructure, i.e., platelet CNF (Pt/p-CNF), fish-bone CNF (Pt/f-CNF), and tubular CNF (Pt/t-CNF) were synthesized by a chemical reduction method. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were applied to characterize the structure of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). Membrane electrode assemblies (MEAs) with the as-prepared catalysts were fabricated and tested. We found that Pt nanoparticles showed different particle size and dispersion on the three kinds of CNF supports and the mean size of the Pt nanoparticles on p-CNF, f-CNF, and t-CNF was 2.4, 2.7, and 2.8 nm, respectively. Single cell testing indicated that the cell with Pt/p-CNF as the anode catalyst gave better performance compared to Pt/f-CNF and Pt/t-CNF. The maximum power density was 0.569 W·cm-2 for Pt/p-CNF, which was higher than that for Pt/f-CNF (0.550 W·cm-2) and Pt/t-CNF (0.496 W·cm-2). Furthermore, Pt nanoparticles supported on carbon black (Pt/XC-72) were also prepared. Pt nanoparticles supported on CNFs have been shown to have a smaller particle size and better dispersion than those on XC-72, and this proves that CNFs can be an efficient electrocatalyst support for proton exchange membrane fuel cells (PEMFCs).
-
Keywords:
-
Catalyst
, - Carbon nanofiber,
- Pt nanoparticles,
- Catalytic activity,
- Fuel cell
-
-
-
[1]
(1) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.
-
[2]
(2) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. S. J. Am. Chem. Soc. 2002, 124, 9382.
-
[3]
(3) Chai, G. S.; Shin, I. S.; Yu, J. S. Adv. Mater. 2004, 16, 2057.
-
[4]
(4) Fang, B.; Kim, M. S.; Yu, J. S. Appl. Catal. B-Environ. 2008, 84, 100.
- [5]
-
[6]
(6) Kong, K.; Choi, Y.; Ryu, B.; Lee, J.; Chang, H. Mater. Sci. Eng. C 2006, 26, 1207.
- [7]
-
[8]
(8) Steigerwalt, E. S.; Deluga,G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097.
-
[9]
(9) Rodriguez, N. M.; Chambers, A.; Baker, R. Langmuir 1995, 11, 3862.
-
[10]
(10) Sun, X.; Li, R.; Villers, D.; Dodelet, J. P.; Desilets, S. Chem. Phys. Lett. 2003, 379, 99.
-
[11]
(11) Salgado, J. R. C.; Antolini, E.; nzalez, E. R. J. Power Sources 2004, 138, 56.
-
[12]
(12) Francisco, A.; Oscar, M.; María, J.; Rafael, M.; Ana, L.; José, S.; Enrique, H.; Antonio, A. Electrochem. Commun. 2009, 11, 1081.
-
[13]
(13) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhou, X. G.; Yuan,W. K. Catal. Today 2008, 131, 270.
-
[14]
(14) Calvillo, L.; Lázaro, M. J.; Suelves, I.; Eche yen, Y.; Bordejé, E. G.; Moliner, R.; Nanosci, J. Nanotechnology 2009, 9, 1.
-
[15]
(15) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B, 2002, 106, 760.
- [16]
-
[17]
(17) Zheng, J. S.;Wang, X. Z.; Qiao, J. L.; Yang, D. J.; Li B.; Li, P.; lv, H.; Ma, J. X. Electrochem. Commun. 2010, 12, 27.
-
[18]
(18) Gangeri, M.; Centi, G.; La Malfa, A.; Perathoner, S.; Vieira, R.; Pham-Huu, C.; Ledoux, M. J. Catal. Today 2005, 102, 50.
- [19]
-
[20]
(20) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhu, J.; Zhou, X. G.; Yuan,W. K. Electrochem. Commun. 2007, 9, 895.
-
[21]
(21) Li, B.; Qiao, J. L.; Zheng, J. S.; Yang, D. J.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 5144.
-
[22]
(22) Zheng, J. S. Microstructure Effect of Carbon Nanofibers on Electrocatalysis: Oxygen Reduction Properties on Cathode. Ph. D. Dissertation, Shanghai, East China University of Science and Technology, 2008.
-
[23]
(23) He. Z. B.; Chen, J. H.; Liu, D. Y.; Zhou, H. H.; Kuang, Y. F. Diamond Relat. Mater. 2004, 13, 1764.
-
[24]
(24) Augustine, R. L. Heterogeneous Catalysis for the Synthetic Chemist; New York: Marcel Dekker, 1996; p 170.
-
[25]
(25) Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.
-
[26]
(26) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.
-
[27]
(27) Perez, J.; nzalez, E. R.; Ticianelli, E. A. Electrochim. Acta 1998, 44, 1329.
-
[28]
(28) Lima, F. H. B.; Ticianelli, E. A. Electrochim. Acta 2004, 49, 4091.
-
[29]
(29) Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem. 2002, 12, 2453.
-
[1]
-
-
[1]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[5]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[9]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[13]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[14]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[16]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[1]
Metrics
- PDF Downloads(1111)
- Abstract views(3087)
- HTML views(20)