Citation: WANG Xi-Zhao, FU Rong, ZHENG Jun-Sheng, Ma Jian-Xin. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1875-1880. doi: 10.3866/PKU.WHXB20110813 shu

Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells

  • Received Date: 4 March 2011
    Available Online: 16 June 2011

    Fund Project: 国家自然科学基金(21006073) (21006073)上海市青年科技启明星计划(11QA1407200) (11QA1407200)上海市重点学科(B303) (B303)化学工程联合国家重点实验室开放基金(SKL-ChE-08C07)资助项目 (SKL-ChE-08C07)

  • Pt nanoparticles supported on carbon nanofibers (Pt/CNFs) with different microstructure, i.e., platelet CNF (Pt/p-CNF), fish-bone CNF (Pt/f-CNF), and tubular CNF (Pt/t-CNF) were synthesized by a chemical reduction method. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were applied to characterize the structure of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). Membrane electrode assemblies (MEAs) with the as-prepared catalysts were fabricated and tested. We found that Pt nanoparticles showed different particle size and dispersion on the three kinds of CNF supports and the mean size of the Pt nanoparticles on p-CNF, f-CNF, and t-CNF was 2.4, 2.7, and 2.8 nm, respectively. Single cell testing indicated that the cell with Pt/p-CNF as the anode catalyst gave better performance compared to Pt/f-CNF and Pt/t-CNF. The maximum power density was 0.569 W·cm-2 for Pt/p-CNF, which was higher than that for Pt/f-CNF (0.550 W·cm-2) and Pt/t-CNF (0.496 W·cm-2). Furthermore, Pt nanoparticles supported on carbon black (Pt/XC-72) were also prepared. Pt nanoparticles supported on CNFs have been shown to have a smaller particle size and better dispersion than those on XC-72, and this proves that CNFs can be an efficient electrocatalyst support for proton exchange membrane fuel cells (PEMFCs).

  • 加载中
    1. [1]

      (1) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.  

    2. [2]

      (2) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. S. J. Am. Chem. Soc. 2002, 124, 9382.  

    3. [3]

      (3) Chai, G. S.; Shin, I. S.; Yu, J. S. Adv. Mater. 2004, 16, 2057.  

    4. [4]

      (4) Fang, B.; Kim, M. S.; Yu, J. S. Appl. Catal. B-Environ. 2008, 84, 100.  

    5. [5]

      (5) Dicks, A. J. Power Sources 2006, 156, 128.  

    6. [6]

      (6) Kong, K.; Choi, Y.; Ryu, B.; Lee, J.; Chang, H. Mater. Sci. Eng. C 2006, 26, 1207.  

    7. [7]

      (7) Park, C.; Baker, R. J. Phys. Chem. B 1999, 103, 2453.  

    8. [8]

      (8) Steigerwalt, E. S.; Deluga,G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097.  

    9. [9]

      (9) Rodriguez, N. M.; Chambers, A.; Baker, R. Langmuir 1995, 11, 3862.  

    10. [10]

      (10) Sun, X.; Li, R.; Villers, D.; Dodelet, J. P.; Desilets, S. Chem. Phys. Lett. 2003, 379, 99.  

    11. [11]

      (11) Salgado, J. R. C.; Antolini, E.; nzalez, E. R. J. Power Sources 2004, 138, 56.  

    12. [12]

      (12) Francisco, A.; Oscar, M.; María, J.; Rafael, M.; Ana, L.; José, S.; Enrique, H.; Antonio, A. Electrochem. Commun. 2009, 11, 1081.  

    13. [13]

      (13) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhou, X. G.; Yuan,W. K. Catal. Today 2008, 131, 270.  

    14. [14]

      (14) Calvillo, L.; Lázaro, M. J.; Suelves, I.; Eche yen, Y.; Bordejé, E. G.; Moliner, R.; Nanosci, J. Nanotechnology 2009, 9, 1.

    15. [15]

      (15) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B, 2002, 106, 760.  

    16. [16]

      (16) Antolini, E. Appl. Catal. B 2009, 88, 1.  

    17. [17]

      (17) Zheng, J. S.;Wang, X. Z.; Qiao, J. L.; Yang, D. J.; Li B.; Li, P.; lv, H.; Ma, J. X. Electrochem. Commun. 2010, 12, 27.  

    18. [18]

      (18) Gangeri, M.; Centi, G.; La Malfa, A.; Perathoner, S.; Vieira, R.; Pham-Huu, C.; Ledoux, M. J. Catal. Today 2005, 102, 50.  

    19. [19]

      (19) Yuan, F.; Ryu, H. Nanotechnology 2004, 15, 596.  

    20. [20]

      (20) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhu, J.; Zhou, X. G.; Yuan,W. K. Electrochem. Commun. 2007, 9, 895.  

    21. [21]

      (21) Li, B.; Qiao, J. L.; Zheng, J. S.; Yang, D. J.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 5144.  

    22. [22]

      (22) Zheng, J. S. Microstructure Effect of Carbon Nanofibers on Electrocatalysis: Oxygen Reduction Properties on Cathode. Ph. D. Dissertation, Shanghai, East China University of Science and Technology, 2008.

    23. [23]

      (23) He. Z. B.; Chen, J. H.; Liu, D. Y.; Zhou, H. H.; Kuang, Y. F. Diamond Relat. Mater. 2004, 13, 1764.  

    24. [24]

      (24) Augustine, R. L. Heterogeneous Catalysis for the Synthetic Chemist; New York: Marcel Dekker, 1996; p 170.

    25. [25]

      (25) Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.  

    26. [26]

      (26) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.  

    27. [27]

      (27) Perez, J.; nzalez, E. R.; Ticianelli, E. A. Electrochim. Acta 1998, 44, 1329.  

    28. [28]

      (28) Lima, F. H. B.; Ticianelli, E. A. Electrochim. Acta 2004, 49, 4091.  

    29. [29]

      (29) Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem. 2002, 12, 2453.  


  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(1111)
  • Abstract views(3087)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return