Citation: XU Pei-Jun, TANG Yuan-Yuan, ZHANG Jing, ZHANG Zhi-Bo, WANG Kun, SHAO Ying, SHEN Hu-Jun, MAO Ying-Chen. Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1839-1846. doi: 10.3866/PKU.WHXB20110811 shu

Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model

  • Received Date: 28 February 2011
    Available Online: 14 June 2011

    Fund Project: 中央高校专项资金优秀青年教师基金(2009QN069)资助项目 (2009QN069)

  • To obtain Gay-Berne (GB) parameters, we carried out Monte Carlo sampling of four reference configurations based on the Boltzmann distribution. After comparing with the van der Waals potential within the all-atom model we obtained the GB parameters. Also by fitting the charge, dipole, and quadrupole with the electric potential obtained from quantum chemical computations with Gaussian 03 we obtained the electric multipole potential (EMP) parameters. With the GB-EMP parameters we then carried out molecular dynamics simulations (MDS) for CHCl3 and tetrahydrofuran (THF) based on the coarse- grained (CG) model. Compared with the all-atom model, the CG model can reproduce the simulation results on the whole, but there are some deviations in the simulations in some details. The reason is that we only take one interaction site into account in this work. Therefore, for more complicated molecules it is necessary to take the placement of the interaction sites into account. Additionally, the multi-sites situation is also considered in the MDS within the frame of the coarse-grained model.

  • 加载中
    1. [1]

      (1) Dror, R. O.; Jensen, M. ?.; Borhani, D.W.; Shaw, D. E. J. Gen. Physiol. 2010, 135, 555.  

    2. [2]

      (2) Karplus, M.; McCammon, J. A. Nature Struct. Biol. 2002, 9, 646.  

    3. [3]

      (3) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan Y. B.;Wriggers,W. Science 2010, 330, 341.  

    4. [4]

      (4) van Gunsteren,W. F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.; Glättli, A.; Hünenberger, P. H.; Kastenholz, M. A.; Oostenbrink, C.; Schenk, M.; Trzesniak, D.; van der Vegt, N. F. A.; Yu, H. B. B. Angew. Chem. Int. Edit. 2006, 45, 4064.  

    5. [5]

      (5) Klepeis, J. L.; Lindorff-Larsen, K.; Dror, R. O.; Shaw, D. E. Curr. Opin. Struct. Biol. 2009, 19, 120.  

    6. [6]

      (6) Freddolino, P. L.; Harrison, C. B.; Liu, Y. X.; Schulten. K. Nature Phys. 2010, 6, 751.  

    7. [7]

      (7) Xu, X. J.; Hou, T. J.; Qiao, X. B.; Zhang,W. Computer Aided Drug Design; Chemical Industry Press: Beijing, 2004; pp 169-172. [徐筱杰, 侯廷军, 乔学斌, 章威. 计算机辅助药物分子设计. 北京: 化学工业出版社, 2004, 169-172.]

    8. [8]

      (8) Leach, A. P. Molecular Modeling, Principles and Application; Person Education Limited: England, 2001; pp165-245.

    9. [9]

      (9) Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd ed.; Springer: New York, 2010; pp 265-343.

    10. [10]

      (10) Voth, G. A. Coarse-Graining Of Condensed Phase and Biomolecular Systems; CRC Press: England, 2009.

    11. [11]

      (11) Chu, J.W.; Izvekov, S.; Voth, G. A. Mol. Sim. 2006, 32, 211.  

    12. [12]

      (12) Marrink, S. J.; de Vries, A. H.; Mark, A. E. J. Phys. Chem. B 2004, 108, 750.  

    13. [13]

      (13) Tozzini, V. Curr. Opin. Struc. Biol. 2005, 15, 114.

    14. [14]

      (14) lubkov, P. A.; Ren, P. Y. J. Chem. Phys. 2006, 125, 064103.  

    15. [15]

      (15) Berne, B. J.; Pechukas, P. J. Chem. Phys. 1972, 56, 4213.  

    16. [16]

      (16) Gay, J. G.; Berne, B. J. J. Chem. Phys. 1981, 74, 3316.  

    17. [17]

      (17) Cleaver, D. J.; Care, C. M.; Allen, M. P.; Neal, M. P. Phys. Rev. E 1996, 54, 559.  

    18. [18]

      (18) Wilson, M. R. J. Chem. Phys. 1997, 107, 8654.  

    19. [19]

      (19) Care, C. M.; Cleaver, D. J. Rep. Prog. Phys. 2005, 68, 2665.  

    20. [20]

      (20) Paramonov, L.; Yaliraki, S. N. J. Chem. Phys. 2005, 123, 194111.  

    21. [21]

      (21) Kabadi, V. N.; Steele,W. A. Ber. Bunsenges. Phys. Chem. 1985, 89, 2.

    22. [22]

      (22) Kabadi, V. N. Ber. Bunsenges. Phys. Chem. 1986, 90, 327.

    23. [23]

      (23) Jackson, J. D. Classical Electrodynamics, 3rd ed; JohnWiley & Sons Inc.: New York, 1999; pp 145-150.

    24. [24]

      (24) Applequist, J. J. Phys. A 1989, 22, 4303.  

    25. [25]

      (25) Ponder, J.W. TINKER Molecular Modeling, Package 5.1; Washington University Medical School.

    26. [26]

      (26) Darden, T.; York, D.; Pedersen, L. G. J. Chem. Phys. 1993, 98, 10089.  

    27. [27]

      (27) Sagui, C.; Pedersen, L. G.; Darden, T. A. J. Chem. Phys. 2004, 120, 73.  

    28. [28]

      (28) Ren, P. Y.; Ponder, J.W. J. Phys. Chem. B 2003, 107, 5933.  

    29. [29]

      (29) Wang, J. M.;Wolf, R. M.; Caldwell,W. J.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.  

    30. [30]

      (30) Yang, L. J.; Tan, C. H.; Hsieh, M. J.;Wang, J. M.; Duan, Y.; Cieplak, P.; Caldwell,W. J.; Kollman, P. A. Luo, R. J. Phys. Chem. B 2006, 110, 13166.  

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    32. [32]

      (32) Stone, A. J. J. Chem. Theory Comput. 2005, 1, 1128.  

    33. [33]

      (33) lubkov, P. A.;Wu, J. C.; Ren, P. Y. Phys. Chem. Chem. Phys. 2008, 10, 2050.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(1462)
  • Abstract views(3062)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return