Citation: HU Xiao-Yan, LI Chun-Yi, YANG Chao-He. Influences of V2O5 Loadings on V2O5/Al2O3 Oxidative Activation Performances for n-Heptane Catalytic Cracking[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2209-2216. doi: 10.3866/PKU.WHXB20110806 shu

Influences of V2O5 Loadings on V2O5/Al2O3 Oxidative Activation Performances for n-Heptane Catalytic Cracking

  • Received Date: 14 March 2011
    Available Online: 10 June 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2006CB202505)资助 (973) (2006CB202505)

  • X-ray diffraction (XRD), nitrogen adsorption-desorption, ammonia-temperature programmed desorption (NH3-TPD), and pyridine-Fourier transform infrared (pyridine-FT-IR) spectroscopy analyses were performed to characterize V2O5/Al2Ox with different V2O5 loadings. We conclude that a 20%-25% (w) V2O5 loading corresponds to the monolayer coverage of VOx units over the surface of V2O5/Al2O3 according to the VOx unit surface density values. The impregnation of V2O5 led to a decrease in the Lewis acidity of the alumina and the formation of Brønsted acid sites, which resulted from the V―OH groups of the oxidized VOx units. With an increase in V2O5 loading the amount of Brønsted acid sites increased and reached a maximum at a V2O5 loading of about 20%. The influence of V2O5 loading in V2O5/Al2O3 on the oxidative activation performance during n-heptane catalytic cracking was studied. The results show that the highest promotion was obtained upon introducing V2O5/Al2O3 with a 20%-25% V2O5 loading into the HZSM-5 equilibrium catalyst. V2O5/Al2O3 (20%-25% V2O5) had a monolayer coverage of VOx units over its surface and it provided the largest amount of surface lattice oxygen and thus the strongest oxidative activation toward n-heptane was achieved. The performance decreased when the V2O5 loading increased further because of the inhibited participation of surface lattice oxygen in the reaction, which was caused by the formation of bulk V2O5 and AlVO4.
  • 加载中
    1. [1]

      (1) Corma, A.; Melo, F. V.; Sauvanaud, L.; Ortega, F. J. Appl. Catal. A 2004, 265, 195.  

    2. [2]

      (2) Hu, X. Y.; Li, C. Y.; Yang, C. H. Acta Phys. ?Chim. Sin. 2010, 26, 3291. [胡晓燕, 李春义, 杨朝合. 物理化学学报, 2010, 26, 3291.]

    3. [3]

      (3) Liu, X. B.; Xu, H. Y.; Li,W. Z.; Chen, Y. X. Acta Petrolei Sinica (Petro. Pro. Sec.) 2004, 20, 88. [刘雪斌, 徐恒泳, 李文钊, 陈燕馨. 石油学报: 石油加工, 2004, 20, 88.]

    4. [4]

      (4) Zhang, C. L.; Zhu, H. O.; Liu, X. B.; Li,W. Z.; Xu, H. Y. J. Fuel Chem. Tech. 2006, 34, 439. [张存龙, 朱海欧, 刘雪斌, 李文钊, 徐恒泳. 燃料化学学报, 2006, 34, 439.]

    5. [5]

      (5) Hu, X. Y.; Li, C. Y.; Yang, C. H. Catal. Today 2010, 158, 504.  

    6. [6]

      (6) Haber, J. Catal. Today 2009, 142, 100.  

    7. [7]

      (7) Abon, M.; Volta, J. C. Appl. Catal. A 1997, 157, 173.  

    8. [8]

      (8) Centi, G.; Perathoner, S.; Trifirb, F. Appl. Catal. A 1997, 157, 143.  

    9. [9]

      (9) Shishido, T.; Konishi, T.; Matsuura, I.;Wang, Y.; Takaki, K.; Takehira, K. Catal. Today 2001, 41, 77.

    10. [10]

      (10) Isaguliants, G. V.; Belomestnykh, I. P. Catal. Today 2005, 100, 441.  

    11. [11]

      (11) Kung, H. H. Adv. Catal. 1994, 40, 1.  

    12. [12]

      (12) Kung, H. H.; Kung, M. C. Appl. Catal. A 1997, 157, 105.  

    13. [13]

      (13) Blasco, T.; Nieto, J. M. L. Appl. Catal. A 1997, 157, 117.  

    14. [14]

      (14) Wielers, A. F. H.; Vaarkamp, M.; Post, M. F. M. J. Catal. 1991, 127, 51.  

    15. [15]

      (15) Wachs, I. E.;Weckhuysen, B. M. Appl. Catal. A 1997, 157, 67.  

    16. [16]

      (16) Grzybowska-Swierkosz, B. Appl. Catal. A 1997, 157, 409.  

    17. [17]

      (17) Ferreira, M. L.; Volpe, M. J. Mol. Catal. A 1999, 149, 33.  

    18. [18]

      (18) Christodoulakis, A.; Machli, M.; Lemonidou, A. A.; Boghosian, S. J. Catal. 2004, 222, 293.  

    19. [19]

      (19) Steinfeldt, N.; Müller, D.; Berndt, H. Appl. Catal. A 2004, 272, 201.  

    20. [20]

      (20) Wu, Z.; Kim, H. S.; Stair, P. C.; Rugmini, S.; Jackson, S. D. J. Phys. Chem. B 2005, 109, 2793.  

    21. [21]

      (21) Martínez-Huerta, M. V.; Gao, X.; Tian, H.;Wachs, I. E.; Fierro, J. L. G.; Ba?ares, M. A. Catal. Today 2006, 118, 279.  

    22. [22]

      (22) Pak, C.; Bell, A. T.; Tilley, T. D. J. Catal. 2002, 206, 49.  

    23. [23]

      (23) Balderas-Tapia, L.; Hernández-Pérez, I.; Schacht, P.; C?rdova, I. R.; Aguilar-Ríos, G. G. Catal. Today 2005, 107-108, 371.

    24. [24]

      (24) Kim, T.;Wachs, I. E. J. Catal. 2008, 197, 133.

    25. [25]

      (25) Argyle, M. D.; Chen, K.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 208, 139.  

    26. [26]

      (26) Khader, M. M. J. Mol. Catal. A 1995, 104, 87.  

    27. [27]

      (27) Turek, A. M.;Wachs. I. E. J. Phys. Chem. 1992, 96, 5000.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    3. [3]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    4. [4]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    5. [5]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    7. [7]

      Haotian ZhangShengfa FengMufan CaoXiong Xiong LiuPengcheng YuanYaping WangMin GaoLong PanZhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096

    8. [8]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    13. [13]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Runzi CaoHeng ShaoXinjie WangJian WangEnxiang ShangYang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(792)
  • Abstract views(2574)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return