Citation: ZHAO Jing, SUN Yue, LI Yong-Jun, LIANG Ren. Preparation of ‘Sandwich-Like’ Au/Pt Composite Multilayer Films for Methanol Electrooxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1868-1874. doi: 10.3866/PKU.WHXB20110803
-
Pt/Au composite monolayer films were fabricated by combining interfacial assembly and under-potential deposition (UPD) with redox replacement. Based on the Pt/Au composite monolayers, an organic linker-free method was proposed for the fabrication of sandwich-like Pt/Au composite multilayer films: (Pt/Au)n, Ptm/Au, and (Pt3/Au)k (n, m, or k represents the layer number). Electron microscopy was used to characterize the morphologies of the Au monolayer films and the Pt/Au composite multilayer films. For each type of composite multilayer films, a common characteristic was that the effective electroactive areas increased with an increase in the layer number. Additionally, the electrocatalytic activities of the composite multilayer films for methanol electrooxidation are systematically discussed by examining the catalytic current densities and its tolerance toward carbonaceous species. For the same series of composite multilayer films (Pt/Au)3, Pt3/Au, and (Pt3/Au)2 showed a higher catalytic current density than bulk Pt (Ptbulk). Among the three composite multilayer films, (Pt/Au)3 showed the best catalytic performance in terms of the current density and tolerance toward carbonaceous species. The tolerance of (Pt/Au)3 to carbonaceous species was found to be better than that of the commercial Pt/C catalyst. This better electrocatalytic activity may be attributed to the maximum synergistic effect between Au and Pt, which depends on the Pt:Au atomic ratio and also the arrangement of Pt and Au nanoparticles.
-
-
[1]
-
[2]
(2) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.; Wilkinson, D. P. J. Power Sources 2006, 155, 95.
- [3]
-
[4]
(4) Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin,W. F.; Vielstich, W. Langmuir 1999, 16, 522.
-
[5]
(5) Liu, Z.; Reed, D.; Kwon, G. M.; Shamsuzzoha, D.; Nikles, E. J. Phys. Chem. C 2007, 111, 14223.
-
[6]
(6) Zhou, S. G.; McIlwrath, K.; Jackson, G.; Eichhorn, B. J. Am. Chem. Soc. 2006, 128, 1780.
-
[7]
(7) Guo, S. J.; Zhai, J. F.; Fang, Y.X.; Dong, S. J.;Wang, E. Chem. Asian J. 2008, 3, 1156.
-
[8]
(8) Zhao, D.; Xu, B. Q. Angew. Chem. Int. Edit. 2006, 45, 4955.
-
[9]
(9) Kiani, A.; Fard, E. N. Electrochim. Acta 2009, 54, 7254.
-
[10]
(10) Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2009, 11, 1717.
-
[11]
(11) Wang, J. J.; Yin, G. P.;Wang, G. J.;Wang, Z. B.; Gao, Y. Z. Electrochem. Commun. 2008, 10, 831.
-
[12]
(12) Markovic, N. M.; Ross, P. N. Surf. Sci. Rep. 2002, 45, 117.
-
[13]
(13) Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.;Wang, L. Y.; Zhong, C. J. Catal. Today 2007, 122, 378.
-
[14]
(14) Zeng, J. H.; Yang, J.; Lee, J. Y.; Zhou,W. J. J. Phys. Chem. B 2006, 110, 24606.
-
[15]
(15) Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2005, 127, 12480.
-
[16]
(16) Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Edit. 2005, 44, 2132.
-
[17]
(17) Du, B. C.; Tong,Y. Y. J. Phys. Chem. B 2005, 109, 17775.
-
[18]
(18) Hammer, B.; Morikawa, Y.; Norskov, J. K. Phys. Rev. Lett. 1996, 76, 2141.
- [19]
-
[20]
(20) Park, S.; Yang, P.; Corredor, P.;Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2428.
-
[21]
(21) Aramata, A.; Modern Aspects of Electrochemistry, Vol. 31; Bockris, J. O. M.; White, R. E.; Conway, B. E. Eds, Kluwer Academic Publishers: New York, 1998; pp 181-250.
-
[22]
(22) Tang, H.; Chen, J. H.;Wang, M. Y.; Nie, L. H.; Kuang,Y. F.; Yao, S. Z. Appl. Catal. A 2004, 275, 43.
-
[23]
(23) Shin, T. Y.; Yoo, S. H.; Park, S. Chem. Mater. 2008, 20, 5682.
-
[24]
(24) Liu, P. P.; Ge, X. B.;Wang, R. Y.; Ma, H. Y.; Ding,Y. Langmuir 2009, 25, 561.
-
[25]
(25) Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung,Y. E. J. Phys. Chem. C 2007, 111, 19126.
-
[26]
(26) Ge, X.;Wang, R.; Liu, P.; Ding,Y. Chem. Mater. 2007, 19, 5827.
- [27]
-
[28]
(28) Patra, S.; Das, J.; Yang, H. Electrochim. Acta 2009, 54, 3441.
-
[29]
(29) Huang, M.; Jin, Y.; Jiang, H.; Sun, X.; Chen, H.; Liu, B.;Wang, E.; Dong, S. J. Phys. Chem. B 2005, 109, 15264.
-
[30]
(30) Li, Y. J.; Huang,W. J.; Sun, S. G. Angew. Chem. Int. Edit. 2006, 45, 2537.
-
[31]
(31) Liu, C.; Li, Y. J.;Wang, M. H.; He, Y.; Yeung, E. S. Nanotechnology 2009, 20, 065604.
-
[32]
(32) Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Mater. Chem. Phys. 2010, 119, 153.
-
[33]
(33) Wang, M. H.; Hu, J.W.; Li, Y. J.; Yeung, E. S. Nanotechnology 2010, 21, 145608.
-
[34]
(34) Li, Y. J.; Liu, C.; Yang, M. H.; He, Y.; Yeung, E. S. J. Electroanal. Chem. 2008, 622, 103.
-
[35]
(35) Frens, G. Nat. Phys. Sci. 1973, 241, 20.
-
[36]
(36) Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. J. Phys. Chem. B 1997, 101, 7566.
-
[37]
(37) Kolb, D. M. Adv. Electrochem. Electrochem. Eng. 1978, 11, 125.
-
[38]
(38) Mrozek, M. F.; Xie, Y.;Weaver, M. J. Anal. Chem. 2001, 73, 5953.
-
[39]
(39) Brankovic, S. R.;Wang, J. X.; Adzic, R. R. Surf. Sci. 2001, 474, L173.
-
[40]
(40) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discuss. 2004, 125, 357.
-
[41]
(41) Mayrhofer, K. J. J.; Arenz, M.; Blizanac, B. B.; Stamenkovic, V.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2005, 50, 5144.
-
[42]
(42) Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819.
-
[43]
(43) Biegler, T.; Rand, D. A. J.;Woods, R. J. Electroanal. Chem. 1971, 29, 269.
-
[44]
(44) Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
-
[45]
(45) Chang, S. C.; Ho, Y.;Weaver, M. J. Surf. Sci. 1992, 265, 81.
-
[46]
(46) Park, S.; Xie, Y.;Weaver, M. J. Langmuir 2002, 18, 5792.
-
[47]
(47) Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.;Wang, J. X.; Hanson, J.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 22701.
-
[48]
(48) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955.
-
[1]
-
-
[1]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[5]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[6]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[7]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[8]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[9]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[13]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[14]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[15]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[16]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[17]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[18]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[19]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[20]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[1]
Metrics
- PDF Downloads(966)
- Abstract views(2652)
- HTML views(29)