Citation: LIU Chun-Guang. Electronic Structures and Second-Order Nonlinear Optical Properties of a Series of Pt―Pt Bond-Containing Metal Complexes[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1661-1665. doi: 10.3866/PKU.WHXB20110722 shu

Electronic Structures and Second-Order Nonlinear Optical Properties of a Series of Pt―Pt Bond-Containing Metal Complexes

  • Received Date: 28 March 2011
    Available Online: 26 May 2011

    Fund Project: 吉林省自然科学基金(20101544)资助项目 (20101544)

  • The electronic structures and second-order nonlinear optical (NLO) properties of a series of Pt―Pt bond-containing metal complexes were calculated using density factional theory (DFT) combined with the finite field (FF) method. The results show that the replacement of a conjugated ligand does not substantially affect the Pt―Pt bond. Additionally, the strength of charge transfer (CT) from the ligand to the metal group increases as the length of the conjugated ligand becomes longer. The first-order hyperpolarizabilities of these metal complexes increase as the length of the conjugated ligand becomes longer but this is not sensitive to the change in charge of these metal complexes. Complex IId containing a relevant long π-conjugated ligand possesses the largest first-order hyperpolarizability according to our DFT-FF calculations. Time-dependent (TD)-DFT calculations show that the π→π* intraligand mixing metal to ligand charge transfer transitions directly contribute to the second-order NLO response of the Pt―Pt bond-containing metal complex IId.

  • 加载中
    1. [1]

      (1) Clays, K. J. Nonlinear Opt. Phys. Mater. 2003, 12, 475.  

    2. [2]

      (2) Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Chem. Rev. 2010, 110, 25.  

    3. [3]

      (3) Di Bella, S. Chem. Soc. Rev. 2001, 30, 355.  

    4. [4]

      (4) Lacroix, P. G. Eur. J. Inorg. Chem. 2001, 339.

    5. [5]

      (5) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 229.

    6. [6]

      (6) Costes, J. P.; Lamere, J. F.; Lepetit, C.; Lacroix, P. G.; Dahan, F. Inorg. Chem. 2005, 44, 1973.  

    7. [7]

      (7) Coe, B. J.; Haris, J. A; Jones, L. A.; Brunschwig, B. S.; Song, K;. Clays, K.; Garin, J.; Orduna, J.; Coles, S. J.; Hursthouse, M. B. J. Am. Chem. Soc. 2005, 127, 4845.  

    8. [8]

      (8) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna, J. J. Am. Chem. Soc. 2005, 127, 13399.  

    9. [9]

      (9) Coe, B. J. Accounts Chem. Res. 2006, 39, 383.  

    10. [10]

      (10) Coe, B. J. Angew. Chem. Int. Edit. 1999, 38, 366.  

    11. [11]

      (11) Averseng, F.; Lepetie, C.; Lacroix, P. G.; Tuchagues, J. P. Chem. Mater. 2000, 12, 2225.

    12. [12]

      (12) Di Bella, S.; Fragala, I.; Ledoux, I.; Diaz-Garcia, M. A.; Lacroix, P. G.; Marks, T. J. Chem. Mater. 1994, 6, 881.  

    13. [13]

      (13) Di Bella, S.; Fragala, I.; Ledoux, I.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 9481.  

    14. [14]

      (14) Di Bella, S.; Fragala, I.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1996, 118, 12747.  

    15. [15]

      (15) Di Bella, S.; Fragala, I.; Ledoux, I.; Diaz-Garcia, M. A.; Marks, T. J. J. Am. Chem. Soc. 1997, 119, 9550.  

    16. [16]

      (16) Long, N. J. Angew. Chem. Int. Edit. 1995, 34, 21.  

    17. [17]

      (17) Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1978, 13, 6099.

    18. [18]

      (18) Fournier, E.; Sicard, S.; Decken, A.; Harvey, P. D. Inorg. Chem. 2004, 43, 1491.  

    19. [19]

      (19) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 1305.  

    20. [20]

      (20) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 957.  

    21. [21]

      (21) Berube, J. F.; Gagnon, K.; Fortin, D.; Decken, A.; Harvery, P. D. Inorg. Chem. 2006, 45, 2812.  

    22. [22]

      (22) Hou, H.W.; Song, Y. L.; Fan, Y. T.; Du, C. X.; Zhu, Y. Inorg. Chim. Acta 2001, 316, 140.

    23. [23]

      (23) Hou, H.W.;Wei, Y. L.; Fan, Y. T.; Du, C. X.; Zhu, Y.; Song, Y. L.; Niu, Y. Y.; Xin, X. Q. Inorg. Chim. Acta 2001, 319, 212.  

    24. [24]

      (24) Meng. X. R.; Song, Y. L.; Hou, H.W.; Fan, Y. T.; Li, B.; Zhu, Y. Inorg. Chem. 2003, 42, 1306.  

    25. [25]

      (25) Hou, H. G.;Wei, Y. L.; Song, Y. L.; Mi, L.W.; Tang, M. S.; Li, L. K.; Fan, Y. T. Angew. Chem. Int. Edit. 2005, 44, 6067.  

    26. [26]

      (26) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  

    27. [27]

      (27) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    28. [28]

      (28) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry; Schaefer, H. F., III. Ed.; Plenum Press: New York, 1976; pp 1-28.

    29. [29]

      (29) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270.  

    30. [30]

      (30) Wadt,W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  

    31. [31]

      (31) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299.  

    32. [32]

      (32) Buckingham, A. D. Adv. Chem. Phys. 1967, 12, 107.  

    33. [33]

      (33) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.  

    34. [34]

      (34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    35. [35]

      (35) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664.  

    36. [36]

      (36) Oudar, J. L. J. Chem. Phys. 1977, 67, 446.  


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(887)
  • Abstract views(2498)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return