Citation: LIU Chun-Guang. Electronic Structures and Second-Order Nonlinear Optical Properties of a Series of Pt―Pt Bond-Containing Metal Complexes[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1661-1665. doi: 10.3866/PKU.WHXB20110722 shu

Electronic Structures and Second-Order Nonlinear Optical Properties of a Series of Pt―Pt Bond-Containing Metal Complexes

  • Received Date: 28 March 2011
    Available Online: 26 May 2011

    Fund Project: 吉林省自然科学基金(20101544)资助项目 (20101544)

  • The electronic structures and second-order nonlinear optical (NLO) properties of a series of Pt―Pt bond-containing metal complexes were calculated using density factional theory (DFT) combined with the finite field (FF) method. The results show that the replacement of a conjugated ligand does not substantially affect the Pt―Pt bond. Additionally, the strength of charge transfer (CT) from the ligand to the metal group increases as the length of the conjugated ligand becomes longer. The first-order hyperpolarizabilities of these metal complexes increase as the length of the conjugated ligand becomes longer but this is not sensitive to the change in charge of these metal complexes. Complex IId containing a relevant long π-conjugated ligand possesses the largest first-order hyperpolarizability according to our DFT-FF calculations. Time-dependent (TD)-DFT calculations show that the π→π* intraligand mixing metal to ligand charge transfer transitions directly contribute to the second-order NLO response of the Pt―Pt bond-containing metal complex IId.

  • 加载中
    1. [1]

      (1) Clays, K. J. Nonlinear Opt. Phys. Mater. 2003, 12, 475.  

    2. [2]

      (2) Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Chem. Rev. 2010, 110, 25.  

    3. [3]

      (3) Di Bella, S. Chem. Soc. Rev. 2001, 30, 355.  

    4. [4]

      (4) Lacroix, P. G. Eur. J. Inorg. Chem. 2001, 339.

    5. [5]

      (5) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 229.

    6. [6]

      (6) Costes, J. P.; Lamere, J. F.; Lepetit, C.; Lacroix, P. G.; Dahan, F. Inorg. Chem. 2005, 44, 1973.  

    7. [7]

      (7) Coe, B. J.; Haris, J. A; Jones, L. A.; Brunschwig, B. S.; Song, K;. Clays, K.; Garin, J.; Orduna, J.; Coles, S. J.; Hursthouse, M. B. J. Am. Chem. Soc. 2005, 127, 4845.  

    8. [8]

      (8) Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna, J. J. Am. Chem. Soc. 2005, 127, 13399.  

    9. [9]

      (9) Coe, B. J. Accounts Chem. Res. 2006, 39, 383.  

    10. [10]

      (10) Coe, B. J. Angew. Chem. Int. Edit. 1999, 38, 366.  

    11. [11]

      (11) Averseng, F.; Lepetie, C.; Lacroix, P. G.; Tuchagues, J. P. Chem. Mater. 2000, 12, 2225.

    12. [12]

      (12) Di Bella, S.; Fragala, I.; Ledoux, I.; Diaz-Garcia, M. A.; Lacroix, P. G.; Marks, T. J. Chem. Mater. 1994, 6, 881.  

    13. [13]

      (13) Di Bella, S.; Fragala, I.; Ledoux, I.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 9481.  

    14. [14]

      (14) Di Bella, S.; Fragala, I.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1996, 118, 12747.  

    15. [15]

      (15) Di Bella, S.; Fragala, I.; Ledoux, I.; Diaz-Garcia, M. A.; Marks, T. J. J. Am. Chem. Soc. 1997, 119, 9550.  

    16. [16]

      (16) Long, N. J. Angew. Chem. Int. Edit. 1995, 34, 21.  

    17. [17]

      (17) Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1978, 13, 6099.

    18. [18]

      (18) Fournier, E.; Sicard, S.; Decken, A.; Harvey, P. D. Inorg. Chem. 2004, 43, 1491.  

    19. [19]

      (19) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 1305.  

    20. [20]

      (20) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 957.  

    21. [21]

      (21) Berube, J. F.; Gagnon, K.; Fortin, D.; Decken, A.; Harvery, P. D. Inorg. Chem. 2006, 45, 2812.  

    22. [22]

      (22) Hou, H.W.; Song, Y. L.; Fan, Y. T.; Du, C. X.; Zhu, Y. Inorg. Chim. Acta 2001, 316, 140.

    23. [23]

      (23) Hou, H.W.;Wei, Y. L.; Fan, Y. T.; Du, C. X.; Zhu, Y.; Song, Y. L.; Niu, Y. Y.; Xin, X. Q. Inorg. Chim. Acta 2001, 319, 212.  

    24. [24]

      (24) Meng. X. R.; Song, Y. L.; Hou, H.W.; Fan, Y. T.; Li, B.; Zhu, Y. Inorg. Chem. 2003, 42, 1306.  

    25. [25]

      (25) Hou, H. G.;Wei, Y. L.; Song, Y. L.; Mi, L.W.; Tang, M. S.; Li, L. K.; Fan, Y. T. Angew. Chem. Int. Edit. 2005, 44, 6067.  

    26. [26]

      (26) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  

    27. [27]

      (27) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    28. [28]

      (28) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry; Schaefer, H. F., III. Ed.; Plenum Press: New York, 1976; pp 1-28.

    29. [29]

      (29) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270.  

    30. [30]

      (30) Wadt,W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  

    31. [31]

      (31) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299.  

    32. [32]

      (32) Buckingham, A. D. Adv. Chem. Phys. 1967, 12, 107.  

    33. [33]

      (33) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.  

    34. [34]

      (34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    35. [35]

      (35) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664.  

    36. [36]

      (36) Oudar, J. L. J. Chem. Phys. 1977, 67, 446.  


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(887)
  • Abstract views(2546)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return