Citation: XU Ling, SHEN Xiao-Xu, XIAO Qiang, ZHONG Yi-Jun, YE Su-Fang, YE Xiang-Rong, ZHU Wei-Dong. Preparation, Characterization and Catalytic Properties of Pd/Fe3O4-MCNT Magnetically Recyclable Catalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1956-1960. doi: 10.3866/PKU.WHXB20110721 shu

Preparation, Characterization and Catalytic Properties of Pd/Fe3O4-MCNT Magnetically Recyclable Catalysts

  • Received Date: 25 February 2011
    Available Online: 26 May 2011

    Fund Project: 浙江省自然科学基金 (Y4100295) (Y4100295) 浙江省高校重大科技攻关项目(ZD2007002) (ZD2007002)浙江省新苗人才计划项目(2009R404014) 资助 (2009R404014)

  • A magnetic composite of multi-walled carbon nanotubes (MCNT) decorated with mono-dispersed Fe3O4 nanoparticles was prepared by a polyol method. The structure and composition of the resultant composite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) techniques. We found that the size of the Fe3O4 nanoparticles supported on the MCNT could be easily controlled by changing the mass ratio of the Fe3O4 precursor to the MCNT. By a subsequent polyol process, 3% (w) Pd was loaded onto a Fe3O4-MCNT composite to form Pd/Fe3O4-MCNT magnetic catalysts. The results from magnetic measurements indicated that the prepared composites before and after Pd loading possess superparamagnetic characteristics at room temperature. The prepared Pd/Fe3O4-MCNT catalysts were evaluated by the selective hydrogenation of cinnamaldehyde as a probe reaction and it showed high activity toward the conversion of cinnamaldehyde to hydrocinnamaldehyde. Under a magnetic field, the catalyst powder was easily separated from the liquid-phase reaction system. The catalyst did not show any significant degradation after four cycles indicating the od recyclability of the prepared composite catalyst.

  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Wang, M.W.; Li, F. Y.; Peng, N. C. New Carbon Mater. 2002, 17, 75. [王敏炜, 李凤仪, 彭年才. 新型炭材料, 2002, 17, 75.]

    3. [3]

      (3) Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M. J. Am. Chem. Soc. 1994, 116, 7935.  

    4. [4]

      (4) Tessonnier, J. P.; Pesant, L.; Ehret, G.; Ledoux, M. J.; Pham-Huu, C. Appl. Catal. A 2005, 288, 203.  

    5. [5]

      (5) Plomp, A. J.; Vuori, H.; Krause, A. O. I.; de Jong, K. P.; Bitter, J. H. Appl. Catal. A 2008, 351, 9.  

    6. [6]

      (6) Xu, X. Z.; Yang, J. F.; Li, X. N.; Yan, X. H. Acta Phys. -Chim. Sin. 2008, 24, 121. [许兴中, 杨建锋, 李小年, 严新焕. 物理化学学报, 2008, 24, 121.]

    7. [7]

      (7) Yoon, B.; Pan, H. B.;Wai, C. M. J. Phys. Chem. C 2009, 113, 1521.

    8. [8]

      (8) Chen, X. C.; Hou, Y. Q.;Wang, H.; Cao, Y.; He, J. H. J. Phys. Chem. C 2008, 112, 8176.

    9. [9]

      (9) Zhu, J.; Zhao, T. J.; Kvande, I.; Chen, D.; Zhou, X. G.; Yuan,W. K. Chin. J. Catal. 2008, 29, 1145. [朱俊, 赵铁均, Kvande, I., 陈德, 周兴贵, 袁渭康. 催化学报, 2008, 29, 1145.]  

    10. [10]

      (10) Utsumi, S.; Urita, K.; Kanoh, H.; Yudasaka, M.; Suenaga, K.; Iijima, S.; Kaneko, K. J. Phys. Chem. B 2006, 110, 7165.  

    11. [11]

      (11) Grzelczak, M.; Correa-Duarte, M. A.; Salgueirino-Maceira, V.; Rodriguez- nzalez, B.; Rivas, J.; Liz-Marzan, L. M. Angew. Chem. Int. Edit. 2007, 46, 7026.  

    12. [12]

      (12) Wu, H. Q.; Xu, D. M.;Wang, Q.;Wang, Q. Y.; Su, G. Q.;Wei, X.W. J. Alloy. Compd. 2008, 463, 78.  

    13. [13]

      (13) Cao, H. Q.; Zhu, M. F.; Li, Y. G.; Liu, J. H.; Ni, Z.; Qin, Z. Y. J. Solid State Chem. 2007, 180, 3218.  

    14. [14]

      (14) Zhang, H.; Du, N.;Wu, P.; Chen, B. D.; Yang, D. R. Nanotechnology 2008, 19, 315604.  

    15. [15]

      (15) Qiu, H. X.;Wang, Z. Y.; Shi, Z. J.; Gu, Z. N.; Qiu, J. S. Acta Phys. -Chim. Sin. 2007, 23, 1451. [邱汉迅, 王志永, 施祖进, 顾镇南, 邱介山. 物理化学学报, 2007, 23, 1451.]

    16. [16]

      (16) Su, X. Z.; Xiao, D. S; Zhou. G. Y. Mater. Rev. 2009, 23, 82. [苏秀芝, 肖定寿, 周国玉. 材料导报, 2009, 23, 82.]

    17. [17]

      (17) Sun, Z. Y.; Liu, Z. M.;Wang, Y.; Han, B. X.; Du, J. M.; Zhang, J. L. J. Mater. Chem. 2005, 15, 4497.  

    18. [18]

      (18) Zhao, D. L.; Zeng, X.W.; Shen, Z. M. Synthesis of Magnetic Carbon Nanotube Composites Coated with Nanosized Ferriferous Oxide. CN Patent 1 791 780.A, 2007-05-30. [赵东林, 曾宪伟, 沈曾明. 纳米四氧化三铁包覆碳纳米管磁性复合材料的制备方法: 中国, CN1 791 780.A[P]. 2007-05-30.]

    19. [19]

      (19) Li, Y. G.; Zhang, Q.;Wang, H. Z.; Zhu, M. F.; Zhang, Q. H. Synthesis of Magnetic Ferriferous Oxide/Multiwalled Carbon Nanotube Composites. CN Patent 101 320 607.A, 2008-12-10. [李耀刚, 张祺, 王宏志, 朱美芳, 张青红. 四氧化三铁/多壁碳纳米管磁性纳米复合材料的制备方法: 中国, CN101 320 607.A[P]. 2008-12-10.]

    20. [20]

      (20) Cao, H. Q.; Zhu, M. F.; Li, Y. G. J. Solid State Chem. 2006, 179, 1208.  

    21. [21]

      (21) Zhu, H.; Lin, H. Y.; Guo, H. F.; Yu, L. F. Mater. Sci. Eng. B 2007, 138, 101.  

    22. [22]

      (22) Cheng, G. F.; Zhao, J.; Tu, Y. H.; He, P. G.; Fang, Y. Z. Anal. Chim. Acta 2005, 533, 11.  

    23. [23]

      (23) Qu, S.;Wang, J.; Kong, J. L.; Yang, P. Y.; Chen, G. Talanta 2007, 71, 1096.  

    24. [24]

      (24) Jin, J.; Li, R.;Wang, H. L.; Chen, H. N.; Liang, K.; Ma, J. T. Chem. Commun. 2007, No. 4, 386.

    25. [25]

      (25) Xiong, Z. H.;Wang, L.; Zhou, J. G.; Liu, J. M. Acta Phys. -Chim. Sin. 2010, 26, 2890. [熊振湖, 王璐, 周建国, 刘建明. 物理化学学报, 2010, 26, 2890.]

    26. [26]

      (26) Guo, D. B.; Yang, L. F.; Zhang, G. Q.; Fang, R. Q.; Cai, J. X. J. Fujian Forestry Sci. Tech. 2006, 33, 25. [郭德波, 杨乐夫, 张国强, 方荣谦, 蔡俊修. 福建林业科技, 2006, 33, 25.]

    27. [27]

      (27) Wan, J. Q.; Cai,W.; Feng, J. T.; Meng, X. X.; Liu, E. Z. J. Mater. Chem. 2007, 17, 1188.  


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(1378)
  • Abstract views(2994)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return