Citation: LIU Xiao-Jun, WANG Ning, CHENG Hao. Local and Long-Range Hybrid Density Functional Study on an Organic Light-Emitting Molecule with Pull-Push Structure[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1640-1646. doi: 10.3866/PKU.WHXB20110718 shu

Local and Long-Range Hybrid Density Functional Study on an Organic Light-Emitting Molecule with Pull-Push Structure

  • Received Date: 21 March 2011
    Available Online: 25 May 2011

    Fund Project: 国家自然科学基金(21003009, 61077022) (21003009, 61077022) 北京交通大学(2009JBZ019-4, 2007RC078) (2009JBZ019-4, 2007RC078)

  • The absorption and fluorescence spectra of 3-(dicyanomethylene)-5,5-dimethyl-1-(4-[9- carbazol]-styryl)cyclohexene (DCDCC), an organic light emitting material with pull-push structure, were investigated using a time-dependent density functional theory (TD-DFT) approach and bulk solvent effects were taken into account. The performance of eight exchange-correlation functionals including both local and long-range hybrids was assessed by comparing the calculated electron transition energies to experimental observations. It turns out that the appropriate choice of functionals is crucial to obtain an accurate value and BMK hybrids, which contain 44% Hartree Fock exchange, in the frame of DFT and TD-DFT with the polarizable continuum model and a medium sized basis set, emerges as an effective strategy for DCDCC. Moreover, the planar and twisted intramolecular charge transfer (PICT and TICT) models were used to interpret the excited state structure of DCDCC although the charge transfer character of the excited-state was not as intense as to emit obvious double fluorescence. The accurate structures were optimized by BMK and supported the PICT model.

  • 加载中
    1. [1]

      (1) Ju, H. D.;Wan, Y.; Yu,W. T.; Liu, A. Y.; Liu, Y.; Ren, Y.; Tao, X. T.; Zou, D. C. Thin Solid Films 2006, 515, 2403.  

    2. [2]

      (2) Zachariasse, K. A.; Druzhinin, S. I.; Bosch,W.; Machinek, R. J. Am. Chem. Soc. 2004, 126, 1705.  

    3. [3]

      (3) Zhao, G.; Han, K. Biophys. J. 2008, 94, 38.  

    4. [4]

      (4) Zhao, G.; Chen, R.; Sun, M.; Liu, J.; Li, G.; Gao, Y.; Han, K.; Yang, X.; Sun, L. Chem. Eur. J. 2008, 14, 6935.  

    5. [5]

      (5) Zhao, G.; Han, K. J. Comput. Chem. 2008, 29, 2010.  

    6. [6]

      (6) Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, D. J.; Baumann,W. Nouv. J. Chim. 1979, 3, 443.

    7. [7]

      (7) Rettig,W. Angew. Chem. Int. Edit. 1986, 25, 971.  

    8. [8]

      (8) Zachariasse, K. A. Chem. Phys. Lett. 2000, 320, 8.  

    9. [9]

      (9) Guido, C. A.; Mennucci, B.; Jacquemin, D.; Adamo, C. Phys. Chem. Chem. Phys. 2010, 12, 8016.

    10. [10]

      (10) Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117, 7433.  

    11. [11]

      (11) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. J. Chem. Phys. 2006, 124.

    12. [12]

      (12) Barone, V.; Improta, R.; Rega, N. Accounts Chem. Res. 2008, 41, 605.  

    13. [13]

      (13) Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. J. Chem. Theory Comput. 2009, 5, 2420.

    14. [14]

      (14) Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C. Accounts Chem. Res. 2009, 42, 326.  

    15. [15]

      (15) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113, 15118.  

    16. [16]

      (16) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    17. [17]

      (17) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.  

    18. [18]

      (18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    19. [19]

      (19) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.  

    20. [20]

      (20) Adamo, C.; Scuseria, G. E.; Barone, V. J. Chem. Phys. 1999, 111, 2889.  

    21. [21]

      (21) Andzelm, J.; Rinderspacher, B. C.; Rawlett, A.; Dougherty, J.; Baer, R.; vind, N. J. Chem. Theory Comput. 2009, 5, 2835.  

    22. [22]

      (22) Plotner, J.; Tozer, D. J.; Dreuw, A. J. Chem. Theory Comput. 2010, 6, 2315.  

    23. [23]

      (23) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009.  

    24. [24]

      (24) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007.  

    25. [25]

      (25) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.  

    26. [26]

      (26) Chai, J. D.; Head- rdon, M. J. Chem. Phys. 2008, 128, 84106.  

    27. [27]

      (27) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.

    28. [28]

      (28) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215.  

    29. [29]

      (29) Jacquemin, D.; Perpete, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory Comput. 2008, 4, 123.  

    30. [30]

      (30) Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.  

    31. [31]

      (31) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  

    32. [32]

      (32) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  

    33. [33]

      (33) Ju, H. D. Design, Synthesis and Properties of Isophorone-based Light-emitting Materials. Ph. D. Dissertation, Shandong University, Jinan, 2007. [鞠海东. 异佛乐酮类发光材料的设计、合成与性质研究[D]. 济南: 山东大学, 2007.]

    34. [34]

      (34) Cammi, R.; Cossi, M.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1996, 105, 10556.  

    35. [35]

      (35) Cammi, R.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1996, 104, 4611.  

    36. [36]

      (36) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley,W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.  

    37. [37]

      (37) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    38. [38]

      (38) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.:Wallingford CT, 2009.

    39. [39]

      (39) Le Bahers, T.; Pauporte, T.; Scalmani, G.; Adamo, C.; Ciofini, I. Phys. Chem. Chem. Phys. 2009, 11, 11276.

    40. [40]

      (40) Stsiapura, V. I.; Maskevich, A. A.; Kuzmitsky, V. A.; Turoverov, K. K.; Kuznetsova, I. M. J. Phys. Chem. A 2007, 111, 4829.  


  • 加载中
    1. [1]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    5. [5]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    6. [6]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(1086)
  • Abstract views(2825)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return