Citation: NIU Ming-Li, SONG Lei, TANG Xiao-Feng, ZHOU Xiao-Guo, LIU Shi-Lin, LIU Fu-Yi, SHAN Xiao-Bin, SHENG Liu-Si. Dissociation Dynamics of O+ Formation Channels from Vibrational State-Selected NO2+ at e3B2 State[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1797-1802. doi: 10.3866/PKU.WHXB20110717
-
The dissociation dynamics of vibrational state-selected NO2+(e3B2) was investigated using threshold photoelectron-photoion coincidence velocity imaging and photoionization by synchrotron radiation. The vibrational resolution threshold photoelectron spectrum of NO2+ (e3B2) was recorded in the energy range of 18.8-19.2 eV and was consistent with previous measurements. Furthermore, the coincident velocity images of the O+ fragments that dissociated from the (0,0,0) and (1,0,0) vibronic levels of NO2+ (e3B2) showed a multi-ring structure, indicating that O+ fragments with different speeds were produced during dissociation as well as corresponding NO molecules with different internal energy distributions. The total kinetic energy released distributions and the angular distributions of O+ during dissociation were obtained subsequently from the images. The internal energy distributions of the NO (X2Π) fragments that dissociated from the two vibrational states of NO2+(e3B2) were very similar and consisted of 3-5 dominant populated vibronic levels. The available energy released from dissociation was found to be almost evenly distributed between the kinetic and internal energies of the fragments and, specifically, a total kinetic energy of 52% and an internal energy of 48% were obtained. In addition, the anisotropy parameter, β, of the O+ fragments was about 0.3 and was hardly dependent on the vibrational quantum number of the NO(X2Π) fragment.
-
-
[1]
(1) Wayne, R. P. Chemistry of Atmospheres; Clarendon Press: Oxford, 1985.
-
[2]
(2) Dalgarno, A.; Fox, J. L. Ion Chemistry in Atmospheric and Astrophysical Plasmas. In Unimolecular and Bimolecular Ion-molecule Reaction Dynamics; Ng, C. Y.; Baer, T.; Powis, I.; Eds.;Wiley: Chichester, 1994; pp 1-86.
-
[3]
(3) Price,W. C. In Molecular Spectroscopy; Hepple, P. Ed.; Elsevier: New York, 1968; Vol. 4.
-
[4]
(4) Chupka,W. A. Chemical Spectroscopy and Photochemistry in the VUV; Sandorfy, C., Ausloos, P. J., Robin, M. B. Eds.; Reidel: Dordrecht, 1974.
-
[5]
(5) Shibuya, K.; Suzuki, S.; Imamura, T.; Koyano, I. J. Phys. Chem. A 1997, 101, 685.
-
[6]
(6) Baltzer, P.; Karlsson, L.;Wannberg, B.; Holland, D. M. P.; MacDonald, M. A.; Hayes, M. A.; Eland, J. H. D. Chem. Phys. 1998, 237, 451.
-
[7]
(7) Eland, J. H. D.; Karlsson, L. Chem. Phys. 1998, 237, 139.
-
[8]
(8) Xu, H.; Guo, Y.; Li, Q.; Shi, Y.; Liu, S.; Ma, X. J. Chem. Phys. 2004, 121, 3069.
-
[9]
(9) Tang, X.; Zhou, X.; Niu, M.; Liu, S.; Sun, J.; Shan, X.; Liu, F.; Sheng, L. Rev. Sci. Instrum. 2009, 80, 113101.
-
[10]
(10) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L. Acta Phys. Sin. 2010, 59, 6940. [唐小锋, 牛铭理, 周晓国, 刘世林. 物理学报, 2010, 59, 6940.]
-
[11]
(11) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F.; Shan, X.; Sheng, L. J. Chem. Phys. 2011, 134, 054312.
-
[12]
(12) Wang, S.; Kong, R.; Shan, X.;Wang, Z.; Zhang, Y.; Sheng, L.; Hao, L.; Zhou, S. J. Synchrotron Radiat. 2006, 13, 415.
-
[13]
(13) Galanti, M.; tt, R.; Renaud, J. F. Rev. Sci. Instrum. 1971, 42, 1818.
-
[14]
(14) Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F. Rev. Sci. Instrum. 1984, 55, 1756.
-
[15]
(15) Horio, T.; Suzuki, T. Rev. Sci. Instrum. 2009, 80, 013706.
-
[16]
(16) Wang, F.; Lipciuc, M. L.; Yang, X.; Kitsopoulos, T. N. Phys. Chem. Chem. Phys. 2009, 11, 2234.
-
[17]
(17) Brundle, C. R.; Neumann, D.; Price,W. C.; Evans, D.; Potts, A. W.; Streets, D. G. J. Chem. Phys. 1970, 53, 705.
- [18]
-
[19]
(19) Jarvis, G. K.; Song, Y.; Ng, C. Y.; Grant, E. R. J. Chem. Phys. 1999, 111, 9568.
-
[20]
(20) Shi, Y.; Li, Q. F.;Wang, H.; Dai, J. H.; Liu, S. L.; Ma, X. X. Acta Phys. Sin. 2005, 54, 2418. [石勇, 李奇峰, 汪华, 戴静华, 刘世林, 马兴孝. 物理学报, 2005, 54, 2418.]
-
[21]
(21) Weitzel, K. M.; M?hnert, J. Int. J. Mass Spectrom. 2002, 214, 175.
-
[22]
(22) Toffoli, D.; Lucchese, R. R.; Lebech, M.; Houver, J. C.; Dowek, D. J. Chem. Phys. 2007, 126, 054307.
-
[23]
(23) Brown, J. M.; Cole, A. R. H.; Honey, F. R. Mol. Phys. 1972, 23, 287.
-
[24]
(24) Zare, R. N. Mol. Photochem. 1972, 4, 1.
-
[1]
-
-
[1]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[2]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[3]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[4]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[5]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[18]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[19]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[20]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[1]
Metrics
- PDF Downloads(863)
- Abstract views(2207)
- HTML views(21)