Citation: NIU Ming-Li, SONG Lei, TANG Xiao-Feng, ZHOU Xiao-Guo, LIU Shi-Lin, LIU Fu-Yi, SHAN Xiao-Bin, SHENG Liu-Si. Dissociation Dynamics of O+ Formation Channels from Vibrational State-Selected NO2+ at e3B2 State[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1797-1802. doi: 10.3866/PKU.WHXB20110717 shu

Dissociation Dynamics of O+ Formation Channels from Vibrational State-Selected NO2+ at e3B2 State

  • Received Date: 28 February 2011
    Available Online: 23 May 2011

    Fund Project: 国家自然科学基金(10979042, 21073173) (10979042, 21073173)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • The dissociation dynamics of vibrational state-selected NO2+(e3B2) was investigated using threshold photoelectron-photoion coincidence velocity imaging and photoionization by synchrotron radiation. The vibrational resolution threshold photoelectron spectrum of NO2+ (e3B2) was recorded in the energy range of 18.8-19.2 eV and was consistent with previous measurements. Furthermore, the coincident velocity images of the O+ fragments that dissociated from the (0,0,0) and (1,0,0) vibronic levels of NO2+ (e3B2) showed a multi-ring structure, indicating that O+ fragments with different speeds were produced during dissociation as well as corresponding NO molecules with different internal energy distributions. The total kinetic energy released distributions and the angular distributions of O+ during dissociation were obtained subsequently from the images. The internal energy distributions of the NO (X2Π) fragments that dissociated from the two vibrational states of NO2+(e3B2) were very similar and consisted of 3-5 dominant populated vibronic levels. The available energy released from dissociation was found to be almost evenly distributed between the kinetic and internal energies of the fragments and, specifically, a total kinetic energy of 52% and an internal energy of 48% were obtained. In addition, the anisotropy parameter, β, of the O+ fragments was about 0.3 and was hardly dependent on the vibrational quantum number of the NO(X2Π) fragment.

  • 加载中
    1. [1]

      (1) Wayne, R. P. Chemistry of Atmospheres; Clarendon Press: Oxford, 1985.

    2. [2]

      (2) Dalgarno, A.; Fox, J. L. Ion Chemistry in Atmospheric and Astrophysical Plasmas. In Unimolecular and Bimolecular Ion-molecule Reaction Dynamics; Ng, C. Y.; Baer, T.; Powis, I.; Eds.;Wiley: Chichester, 1994; pp 1-86.

    3. [3]

      (3) Price,W. C. In Molecular Spectroscopy; Hepple, P. Ed.; Elsevier: New York, 1968; Vol. 4.

    4. [4]

      (4) Chupka,W. A. Chemical Spectroscopy and Photochemistry in the VUV; Sandorfy, C., Ausloos, P. J., Robin, M. B. Eds.; Reidel: Dordrecht, 1974.

    5. [5]

      (5) Shibuya, K.; Suzuki, S.; Imamura, T.; Koyano, I. J. Phys. Chem. A 1997, 101, 685.  

    6. [6]

      (6) Baltzer, P.; Karlsson, L.;Wannberg, B.; Holland, D. M. P.; MacDonald, M. A.; Hayes, M. A.; Eland, J. H. D. Chem. Phys. 1998, 237, 451.  

    7. [7]

      (7) Eland, J. H. D.; Karlsson, L. Chem. Phys. 1998, 237, 139.  

    8. [8]

      (8) Xu, H.; Guo, Y.; Li, Q.; Shi, Y.; Liu, S.; Ma, X. J. Chem. Phys. 2004, 121, 3069.  

    9. [9]

      (9) Tang, X.; Zhou, X.; Niu, M.; Liu, S.; Sun, J.; Shan, X.; Liu, F.; Sheng, L. Rev. Sci. Instrum. 2009, 80, 113101.  

    10. [10]

      (10) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L. Acta Phys. Sin. 2010, 59, 6940. [唐小锋, 牛铭理, 周晓国, 刘世林. 物理学报, 2010, 59, 6940.]

    11. [11]

      (11) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F.; Shan, X.; Sheng, L. J. Chem. Phys. 2011, 134, 054312.  

    12. [12]

      (12) Wang, S.; Kong, R.; Shan, X.;Wang, Z.; Zhang, Y.; Sheng, L.; Hao, L.; Zhou, S. J. Synchrotron Radiat. 2006, 13, 415.  

    13. [13]

      (13) Galanti, M.; tt, R.; Renaud, J. F. Rev. Sci. Instrum. 1971, 42, 1818.  

    14. [14]

      (14) Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F. Rev. Sci. Instrum. 1984, 55, 1756.  

    15. [15]

      (15) Horio, T.; Suzuki, T. Rev. Sci. Instrum. 2009, 80, 013706.  

    16. [16]

      (16) Wang, F.; Lipciuc, M. L.; Yang, X.; Kitsopoulos, T. N. Phys. Chem. Chem. Phys. 2009, 11, 2234.

    17. [17]

      (17) Brundle, C. R.; Neumann, D.; Price,W. C.; Evans, D.; Potts, A. W.; Streets, D. G. J. Chem. Phys. 1970, 53, 705.  

    18. [18]

      (18) Asbrink, L. Chem. Phys. Lett. 1970, 7, 549.  

    19. [19]

      (19) Jarvis, G. K.; Song, Y.; Ng, C. Y.; Grant, E. R. J. Chem. Phys. 1999, 111, 9568.  

    20. [20]

      (20) Shi, Y.; Li, Q. F.;Wang, H.; Dai, J. H.; Liu, S. L.; Ma, X. X. Acta Phys. Sin. 2005, 54, 2418. [石勇, 李奇峰, 汪华, 戴静华, 刘世林, 马兴孝. 物理学报, 2005, 54, 2418.]

    21. [21]

      (21) Weitzel, K. M.; M?hnert, J. Int. J. Mass Spectrom. 2002, 214, 175.  

    22. [22]

      (22) Toffoli, D.; Lucchese, R. R.; Lebech, M.; Houver, J. C.; Dowek, D. J. Chem. Phys. 2007, 126, 054307.  

    23. [23]

      (23) Brown, J. M.; Cole, A. R. H.; Honey, F. R. Mol. Phys. 1972, 23, 287.  

    24. [24]

      (24) Zare, R. N. Mol. Photochem. 1972, 4, 1.


  • 加载中
    1. [1]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(863)
  • Abstract views(2207)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return