Citation: FU Su-Zhen, CHEN Qing-De, SHEN Xing-Hai. Aggregation Behavior of 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids in Aqueous Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1913-1918. doi: 10.3866/PKU.WHXB20110713 shu

Aggregation Behavior of 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids in Aqueous Solutions

  • Received Date: 12 April 2011
    Available Online: 20 May 2011

    Fund Project: 国家自然科学基金(20871009) (20871009)

  • The aggregation behavior of 1-alkyl-3-methylimidazolium tetrafluoroborate ([Cnmim][BF4]) ionic liquids in aqueous solutions was investigated by isothermal titration calorimetry (ITC), fluorescence quenching, and conductivity methods. The critical micelle concentration (cmc), the changes of the enthalpy (ΔHmic), the Gibbs free energy (ΔGmic), and the entropy (ΔSmic) for the micelle formation and the mean aggregation number of the micelles at different concentrations were obtained. We found that entropy was the principle driving force leading to the micellization of these types of ionic liquids. The increase in alkyl chain length led to a decrease in ΔGmic, favoring the formation of micelles. Furthermore, by combining with the aqueous solution data for [Cnmim]X (X=Cl-, Br-), the effect of anions on the aggregation behavior of the ionic liquids was investigated. The increase in the hydrophobicity and the volume of the anions favored the formation of micelles when the ionic liquids contained identical cations. This is believed to result from the decrease in electrostatic repulsion between the head groups in the micelles because of the relatively strong binding between the anions and the cations. With respect to [C12mim][BF4], the addition of β-cyclodextrin (β-CD) caused an increase in its cmc and a decrease in ΔHmic and ΔSmic; while the presence of KBF4 caused a decrease in cmc and ΔHmic, and an increase in ΔSmic.

  • 加载中
    1. [1]

      (1) Welton, T. Chem. Rev. 1999, 99, 2071.  

    2. [2]

      (2) Endo, T.; Kato, T.; Nishikawa, K. J. Phys. Chem. B 2010, 114, 9201.  

    3. [3]

      (3) Yang, Y. K.; Qiu, S. Q.; He, C. G.; He,W. J.; Yu, L. J.; Xie, X. L. Appl. Surf. Sci. 2010, 257, 1010.  

    4. [4]

      (4) Shokouhi, M.; Adibi, M.; Jalili, A. H.; Hosseini-Jenab, M.; Mehdizadeh, A. J. Chem. Eng. Data 2010, 55, 1663.  

    5. [5]

      (5) Wang, Y.; Han, J. A.; Xie, X. Q.; Li, C. X. Cent. Eur. J. Chem. 2010, 8, 1185.  

    6. [6]

      (6) Du, P.; Liu, S. N.;Wu, P.; Cai, C. X. Electrochim. Acta 2007, 52, 6534.  

    7. [7]

      (7) Qiu, Z. M.; Texter, J. Curr. Opin. Colloid Interface Sci. 2008, 13, 252.  

    8. [8]

      (8) Shangguan, X. D.; Tang, H. S.; Liu, R. X.; Zheng, J. B. J. Anal. Chem. 2010, 38, 1510.

    9. [9]

      (9) Trombetta, F.; de Souza, M. O.; de Souza, R. F.; Martini, E. M. A. J. Appl. Electrochem. 2009, 39, 2315.  

    10. [10]

      (10) Dorbritz, S.; Ruth,W.; Kragl, U. Adv. Synth. Catal. 2005, 347, 1273.  

    11. [11]

      (11) Katayanagi, H.; Nishikorbritz, K.; Shimozaki, H.; Miki, K.; Westh, P.; Koga, Y. J. Phys. Chem. B 2004, 108, 19451.  

    12. [12]

      (12) Malham, I. B.; Letellier, P.; Turmine, M. J. Phys. Chem. B 2006, 110, 14212.  

    13. [13]

      (13) Archer, D. G.;Widegren, J. A.; Kirklin, D. R.; Magee, J.W. J. Chem. Eng. Data 2005, 50, 1484.  

    14. [14]

      (14) Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K. Langmuir 2004, 20, 2191.  

    15. [15]

      (15) Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Langmuir 2007, 23, 4178.  

    16. [16]

      (16) Bouchemal, K.; Agnely, F.; Koffi, A.; Djabourov, M.; Ponchel, G. J. Mol. Recognit. 2010, 23, 335.

    17. [17]

      (17) Bai, G. Y.; Lopes, A.; Bastos, M. J. Chem. Thermodyn. 2008, 40, 1509.  

    18. [18]

      (18) Guan,W.;Wang, H.; Li, L.; Zhang, Q. G.; Yang, J. Z. Thermo. Acta 2005, 437, 196.  

    19. [19]

      (19) Luczak, J.; Jungnickel, C.; Joskowska, M.; Thoming, J.; Hupka, J. J. Colloid Interface Sci. 2009, 336, 111.  

    20. [20]

      (20) Stodghill, S. P.; Smith, A. E.; O'Haver, J. H. Langmuir 2004, 20, 11387.  

    21. [21]

      (21) Fang, Y.; Liu, X. F.; Xia, Y. M.; Yang, Y.; Cai, K.; Suh, J. M.; Cho, H. Y. Acta Phys. -Chim. Sin. 2001, 17, 828. [方云, 刘雪峰, 夏咏梅, 杨扬, 蔡琨, 徐廷穆, 赵宪英. 物理化学学报, 2001, 17, 828.]

    22. [22]

      (22) Molina-Bolivar, J. A.; Hierrezuelo, J. M.; Ruiz, C. C. J. Colloid Interface Sci. 2007, 313, 656.  

    23. [23]

      (23) Vanyur, R.; Biczok, L.; Miskolczy, Z. Colloid Surf. APhysicochem. Eng. Asp. 2007, 299, 256.  

    24. [24]

      (24) Klevens, H. B. J. Am. Oil Chem. Soc. 1953, 30, 74.  

    25. [25]

      (25) Zhao, G. X. Physcal Chemistry of Surfacatants; Peking Universtity Press: Beiijing, 1991; pp 137-143. [赵国玺. 表面活性剂物理化学. 北京: 北京大学出版社, 1991: 137-143.]

    26. [26]

      (26) Bouchemal, K.; Agnely, F.; Koffi, A.; Djabourov, M.; Ponchel, G. Drug Discov. Today 2008, 13, 960.  

    27. [27]

      (27) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.;Watanabe, M. J. Phys. Chem. B 2005, 109, 6103.  

    28. [28]

      (28) Sehgal, P.; Sharma, M.; Larsen, K. L.;Wimmer, R.; Otzen, D. E.; Doe, H. J. Dispersion Sci. Technol. 2008, 29, 128.  

    29. [29]

      (29) Kresheck, G. C. J. Phys. Chem. B 2009, 113, 6732.  

    30. [30]

      (30) Fernandes, R. M. F.; Marques, E. F.; Silva, B. F. B.;Wang, Y. J. J. Mol. Liq. 2010, 157, 113.  

    31. [31]

      (31) Du, J.; Jiang, B. Y.; Xie, J. Q.; Zeng, X. C. J. Dispersion Sci. Technol. 2001, 22, 529.  

    32. [32]

      (32) Chandra, A. K.; Turro, N. J.; Lyons, A. L.; Stone, P. J. Am. Chem. Soc. 1978, 100, 4964.  

    33. [33]

      (33) Russell, J. C.;Wild, U. P.; Whitten, D. G. J. Phys. Chem. 1986, 90, 1319.  

    34. [34]

      (34) Wang, J. J.;Wang, H. Y.; Zhang, S. L.; Zhang, H. H.; Zhao, Y. J. Phys. Chem. B 2007, 111, 6181.  

    35. [35]

      (35) Hadgiivanova, R.; Diamant, H. J. Phys. Chem. B 2007, 111, 8854.  

    36. [36]

      (36) odchild, I.; Collier, L.; Millar, S. L.; Prokes, I.; Lord, J. C. D.; Butts, C. P.; Bowers, J.;Webster, J. R. P.; Heenan, R. K. J. Colloid Interface Sci. 2007, 307, 455.  


  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(1164)
  • Abstract views(3331)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return