Citation: CHEN Lang, RAO Mu-Min, LI Wei-Shan, XU Meng-Qing, LIAO You-Hao, TAN Chun-Lin, YI Jin. Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1689-1694. doi: 10.3866/PKU.WHXB20110712 shu

Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent

  • Received Date: 18 January 2011
    Available Online: 20 May 2011

    Fund Project: 国家自然科学基金(20873046) (20873046)广东省自然科学基金(10351063101000001)资助项目 (10351063101000001)

  • Poly(acrylonitrile-methyl methacrylate-styrene) (PAMS) was synthesized by emulsion polymerization and a polyethylene (PE)-supported membrane was prepared using urea as foaming agent (PE-PAMS-U). The structure and performance of the PAMS copolymer, PE-PAMS-U membrane and corresponding gel polymer electrolyte (GPE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and by a charge/discharge test. We found that the performance of the PE-PAMS-U based GPE could be improved when using urea as a foaming agent. With the use of urea the pore size of the membrane becomes uniform, the ionic conductivity of the GPE improves from 1.1×10-3 to 2.15×10-3 S·cm-1 at room temperature and the interfacial resistance between the GPE and lithium is reduced from 480 to 250 Ω·cm2. The GPE is stable up to 5.0 V (vs Li/Li+) at room temperature and the battery made using the Li/PE-supported GPE/LiCoO2 shows a od rate and od cycle performance.

  • 加载中
    1. [1]

      (1) Liao, Y. H.; Zhou, D. Y.; Rao, M. M.; Li,W. S.; Cai, Z. P.; Liang, Y.; Tan, C. L. J. Power Sources 2009, 189, 139.  

    2. [2]

      (2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

    3. [3]

      (3) Subba, C. V. R.;Wu, G. P.; Zhao, C. X.; Zhu, Q. Y.; Chen,W.; Kalluru Rajamohan, R. J. Non-Cryst. Solids 2007, 353, 440.  

    4. [4]

      (4) Sundaram, N. T. K.; Subramania, A. J. Membr. Sci. 2007, 289, 1.  

    5. [5]

      (5) Zuo, X. X.; Xu, M. Q.; Li,W. S.; Su, D. G.; Liu, J. S. Electrochem. Solid-State Lett. 2006, 9, A196.

    6. [6]

      (6) Jeon, J. D.; Kim, M. J.; Kwak, S. Y. J. Power Sources 2006, 162, 1304.  

    7. [7]

      (7) Xie, H.; Tang, Z. Y.; Li, Z. Y.; He, Y. B.; Liu, Y.;Wang, H. J. Solid State Electrochem. 2008, 12, 1497.  

    8. [8]

      (8) Chen-Yang, Y.W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Solid State Ionics 2002, 150, 327.

    9. [9]

      (9) Pu,W. H.; He, X. M.;Wang, L.; Tian, Z.; Jiang, C. Y.;Wan, C. R. J. Membr. Sci. 2006, 280, 6.  

    10. [10]

      (10) Zhang, G. Q.; Ma, L.;Wu, Z. J.; Zhang, H. Y.; Ni, P. Acta Phys. -Chim. Sin. 2009, 25, 555. [张国庆, 马莉, 吴忠杰, 张海燕, 倪佩. 物理化学学报, 2009, 25, 555.]

    11. [11]

      (11) Ahmad, A.; Rahman, M. Y. A.; Su'ait, M. S. Physica B 2008, 403, 4128.  

    12. [12]

      (12) Reddy, C. V. S.; Zhu, Q. Y.; Mai, L. Q.; Chen,W. J. Solid State Electrochem. 2007, 11, 543.

    13. [13]

      (13) Stephan, A. M.; Nahm, K. S. Polymer 2006, 47, 5952.  

    14. [14]

      (14) Kim, D.W.; Oh, B.; Park, J. H.; Sun, Y. K. Solid State Ionics 2000, 138, 41.  

    15. [15]

      (15) Song, M. K.; Kim, Y. T.; Cho, J. Y.; Cho, B.W.; Popov, B. N.; Rhee, H.W. J. Power Sources 2004, 125, 10.  

    16. [16]

      (16) Rao, M. M.; Liu, J. S.; Li,W. S.; Liao, Y. H.; Liang, Y.; Zhao, L. Z. J. Solid State Electrochem. 2010, 14, 255.  

    17. [17]

      (17) Liao, Y. H.; Rao, M. M.; Li,W. S.; Tan, C. L.; Yi, J.; Chen, L. Electrochim. Acta 2009, 54, 6396.  

    18. [18]

      (18) Liao, Y. H.; Rao, M. M.; Li,W. S.; Yang, L. T.; Zhu, B. K.; Xu, R.; Fu, C. H. J. Membr. Sci. 2010, 352, 95.  

    19. [19]

      (19) Li, Z. H.; Cheng, C.; Zhan, X. Y.;Wu, Y. P.; Zhou, X. D. Electrochim. Acta 2009, 54, 4403.  

    20. [20]

      (20) Rao, M. M.; Liu, J. S.; Li,W. S.; Liang, Y.; Zhou, D. Y. J. Membr. Sci. 2008, 322, 314.  

    21. [21]

      (21) Liang, Y. H.;Wang, C. C.; Chen, C. Y. J. Power Sources 2005, 148, 55.  

    22. [22]

      (22) Wang, Z. L.; Tang, Z. Y. Electrochim. Acta 2004, 49, 1063.  

    23. [23]

      (23) Yang, M. J.; Li,W. L.;Wang, G. G.; Zhang, J. Q. Solid State Ionics 2005, 176, 2829.

    24. [24]

      (24) Liu, H. R.; Du, J. H. Solid State Sci. 2006, 8, 526.  

    25. [25]

      (25) Zhang, H. P.; Zhang, P.; Li, Z. H.; Sun, M.;Wu, Y. P.;Wu, H. Q. Electrochem. Commun. 2007, 9, 1700.  

    26. [26]

      (26) Yang, C. C. Mater. Lett. 2004, 58, 33.  

    27. [27]

      (27) Miao, R. Y.; Liu, B.W.; Zhu, Z. Z.; Liu, Y.; Li, J. L.;Wang, X. D.; Li, F. Q. J. Power Sources 2008, 184, 420.  

    28. [28]

      (28) Nookala, M.; Kumar, B.; Rodrigues, S. J. Power Sources 2002, 111, 165.  

    29. [29]

      (29) Lee, Y. G.; Park, J. K.; Moon, S. I. Electrochim. Acta 2000, 46, 533.  

    30. [30]

      (30) Chaix, N.; Alloin, F.; Bélières, J. P.; Saunier, J.; Sanchez, J. Y. Electrochim. Acta 2002, 47, 1327.  

    31. [31]

      (31) Rao, M. M.; Liu, J. S.; Li,W. S.; Liang, Y.; Liao, Y. H.; Zhao, L. Z. J. Power Sources 2009, 189, 711.  


  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(961)
  • Abstract views(2987)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return