Citation: ZHANG Li-Li, HAN Pei-De, ZHANG Cai-Li, DONG Ming-Hui, YANG Yan-Qing, GU Xiang-Yang. Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1609-1614. doi: 10.3866/PKU.WHXB20110702 shu

Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces

  • Received Date: 11 January 2011
    Available Online: 13 May 2011

    Fund Project: 国家自然科学基金(50874079) (50874079)太原市科技项目(100115105)资助 (100115105)

  • The structural stability and electronic properties of MgF2(010), MgF2(001), MgF2(011), and MgF2(110) surfaces were investigated using density functional theory (DFT). We found that the atoms located in the top layers near the surface are obviously relaxed and that the fluorine-terminated surface structure is much more stable than the other two structures. According to the surface energy values of the four different fluorine-terminated surfaces we conclude that the structural stability of the MgF2 surfaces decreases in the following order: MgF2(110), MgF2(011), MgF2(010), and MgF2(001). The density of states of the MgF2(110) surface shows that more bonding electrons are in low level areas and, furthermore, because of the influence of the surface the fluorine atom charges gather at the surface, which makes the surface electronegative and results in an increase in its activity.

  • 加载中
    1. [1]

      (1) Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1991; pp 899-901.

    2. [2]

      (2) Simanovskii, D. M.; Schwettman, H. A.; Lee, H.;Welch, A. J. Phys. Rev. Lett. 2003, 91, 107601.  

    3. [3]

      (3) Moghim, M. H.; Paydar, M. H. Infrared Phys. Technol. 2010, 53, 430.  

    4. [4]

      (4) Sun, Z. Q.; Cai, Q.; Song, X. P. Thin Solid Films 2008, 516, 2280.  

    5. [5]

      (5) Liu, G. H.; Xiao, Q. L.; Jin, Y. X.; Zhang,W. L.; He, H. B.; Fan, Z. X. Vacuum 2010, 84, 778.  

    6. [6]

      (6) Perales, F.; Soto, D.; De las Heras, C. Thin Solid Films 2010, 518, 4221.  

    7. [7]

      (7) Bridou, F.; Cuniot-Ponsard, M.; Desvignes, J. M.; Richter, M.; Kroth, U.; ttwald, A. Opt. Commun. 2010, 283, 1351.  

    8. [8]

      (8) Zhou, S. L.; Liu, S. J.; Jiang, X. Y.; Chen, G. H.; Cao, C.; Liu, F. Y.; Chen, X. Q. Microchem. J. 2010, 96, 412.  

    9. [9]

      (9) Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, 2002; p 523.

    10. [10]

      (10) Kitamura, Y.; Miyazaki, N.; Mabuchi, T.; Nawata, T. J. Cryst. Growth 2009, 311, 3954.  

    11. [11]

      (11) Kusaba, K.; Kikegawa, T. Solid State Commun. 2008, 148, 440.  

    12. [12]

      (12) Liu, J. C.; Zhang, X. M.; Chen, M. A.; Tang, J. G.; Liu, S. D. Acta Phys. -Chim. Sin. 2009, 25, 2519. [刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. 物理化学学报, 2009, 25, 2519.]

    13. [13]

      (13) Chen, Q. L.; Tang, C. Q. Acta Phys. -Chim. Sin. 2009, 25, 915. [陈琦丽, 唐超群. 物理化学学报, 2009, 25, 915.]

    14. [14]

      (14) Chen,W. B.; Tao, X. M.; Shang, X. F.; Tan, M. Q. Acta Phys. -Chim. Sin. 2008, 24, 2185. [陈文斌, 陶向明, 尚学府, 谭明秋. 物理化学学报, 2008, 24, 2185.]

    15. [15]

      (15) Pelg, G.; Schröder, U.; Kress,W.; deWette, F.W. J. Electron. Spectrosc. Relat. Phenom. 1993, 64-65, 769.

    16. [16]

      (16) Vassilyeva, A. F.; Eglitis, R. I.; Kotomin, E. A.; Dauletbekova, A. K. Physica B 2010, 405, 2125.  

    17. [17]

      (17) Woo, S. H.; Hwangbo, C. K. Surf. Coat. Technol. 2007, 201, 8250.  

    18. [18]

      (18) García-Juárez, A.; Gómez-Colín, R.; Gracia-Témich, F.; Gutiérrez-Martínez, C. Opt. Laser Technol. 2009, 41, 550.  

    19. [19]

      (19) Liu, G. H.; Zhou, M.; Hu, G. H.; Liu, X. F.; Jin, Y. X.; He, H. B.; Fan, Z. X. Appl. Surf. Sci. 2010, 256, 4206.  

    20. [20]

      (20) Payne, M. C.; Teter, M. P.; Allan, D. C. Rev. Mod. Phys. 1992, 64, 1045.  

    21. [21]

      (21) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    22. [22]

      (22) Kanchana, V.; Vaitheeswaran, G.; Raja palan, M. J. Alloy. Compd. 2003, 352, 60.  

    23. [23]

      (23) Zhang, L. J.;Wang, Y. C.; Cui, T.; Ma, Y. M.; Zou, G. T. Solid State Commun. 2008, 145, 283.

    24. [24]

      (24) Fang, C. M.; Ramanujachary, K. V.; Hintzen, H. T.; DeWith, G. J. Alloy. Compd. 2003, 351, 72.  

    25. [25]

      (25) Wyckoff, R.W. G. Crystal Structures, 2nd ed.;Wiley Press: New York, 1964.

    26. [26]

      (26) Sun, J. Z.; Stirner, T.; Matthews, A. Surf. Coat. Technol. 2006, 201, 4205.  

    27. [27]

      (27) Arya, A.; Carter, E. A. Surf. Sci. 2004, 560, 103.  


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    19. [19]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(1459)
  • Abstract views(3090)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return