Citation: WEN Zhen-Li, CAO Xiao-Ning, ZHOU Chun-Lan, ZHAO Lei, LI Hai-Ling, WANG Wen-Jing. Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1531-1536. doi: 10.3866/PKU.WHXB20110632 shu

Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition

  • Received Date: 18 January 2011
    Available Online: 10 May 2011

    Fund Project: 国家高技术研究发展计划(2007AA052437) (2007AA052437)中国科学院知识创新工程重要方向项目(KGCX2-YW-382)资助 (KGCX2-YW-382)

  • Hydrogenated silicon nitride films were prepared on the p-type polished silicon substrates by the direct plasma enhanced chemical vapor deposition (PECVD). The influences of deposition temperature on the composition, optical characteristics, structural characteristics, and passivation characteristics of the SiNx:H film were studied. All the solar cell devices were fabricated using industrial state-of-art crystal silicon solar cell technology. The influence of deposition temperature on the as-fabricated cell's electrical performance is demonstrated. The refractive index of the film ranges from 1.926 to 2.231 and it increases with an increase in the deposition temperature. This shows that the Si/N mole ratio also increases with deposition temperature. The Si-H bond and the N-H bond break and form a new Si-N bond when the deposition temperature is higher. This increase in the Si-N concentration results in an increase in film density. The effective minor carrier lifetime of the coated wafer increases initially with the substrate temperature. At a temperature of 450 °C the effective minor carrier lifetime begins to decrease. This phenomenon can be explained by H extraction from the film. For all the samples, the effective minor carrier lifetime degrades with time. The SiNx:H film prepared at a deposition temperature of 450 °C shows the best anti-reflection and surface passivation properties. The electrical performance of the fully functional solar cells is also demonstrated and the optimized results are highlighted and discussed.

  • 加载中
    1. [1]

      (1) Jana, T.; Mukhopadhyay, S.; Ray, S. Sol. Energy Mater. Sol. Cells 2002, 71 (2), 197.

    2. [2]

      (2) Nijs, J. Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices; Taylor & Francis: Bristol, 1994.

    3. [3]

      (3) Duerinckx, F.; Szlufcik, J. Sol. Energy Mater. Sol. Cells 2002, 72 (1-4), 231.

    4. [4]

      (4) Schmidt, J.; Kerr, M. Sol. Energy Mater. Sol. Cells 2001, 65 (1-4), 585.

    5. [5]

      (5) Soppe,W.; Rieffe, H.;Weeber, A. Progress in Photovoltaics-Research and Applications 2005, 13 (7), 551.

    6. [6]

      (6) Santana, G.; Morales-Acevedo, A. Sol. Energy Mater. Sol. Cells 2000, 60 (2), 135.

    7. [7]

      (7) Lauinger, T.; Moschner, J.; Aberle, A.; Hezel, R. J. Vac. Sci. Technol. A- Vacuum, Surfaces, and Films 1998, 16, 530.

    8. [8]

      (8) Yoo, J.; Dhungel, S.; Yi, J. Thin Solid Films 2007, 515 (12), 5000.

    9. [9]

      (9) Dauwe, S. Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells. Ph. D. Dissertation, Hannover University, Germany, 2004.

    10. [10]

      (10) Bustarret, E.; Bensouda, M.; Habrard, M.; Bruyere, J.; Poulin, S.; Gujrathi, S. Phys. Rev. B 1988, 38 (12), 8171.

    11. [11]

      (11) Lelievre, J.; Fourmond, E.; Kaminski, A.; Palais, O.; Ballutaud, D.; Lemiti, M. Sol. Energy Mater. Sol. Cells 2009, 93 (8), 1281.

    12. [12]

      (12) Tsu, D.; Lucovsky, G.; Mantini, M. Phys. Rev. B 1986, 33 (10), 7069.

    13. [13]

      (13) Morimoto, A.; Tsujimura, Y.; Kumeda, M.; Shimizu, T. Jpn. J. Appl. Phys 1985, 24 (11), 1394.

    14. [14]

      (14) Lanford,W.; Rand, M. J. Appl. Phys 1978, 49, 2473.

    15. [15]

      (15) Giorgis, F.; Giuliani, F.; Pirri, C.; Tresso, E.; Summonte, C.; Rizzoli, R.; Galloni, R.; Desalvo, A.; Rava, P. Philosophical Magazine Part B 1998, 77 (4), 925.

    16. [16]

      (16) Hong, J.; Kessels,W.; Soppe,W.; Rieffe, H.;Weeber, A.; van de Sanden, M. Structural Film Characteristics Related to the Passivation Properties of High-rate (> 0.5 nm/s) Plasma Deposited a-SiNx: H. In 3rdWorld Conf. on Photovoltaic Energy Conversion; Osaka, 2003; Wcpec-3 Organizing Committee: TYokyo, Japan, 2003; 1185.

    17. [17]

      (17) Soppe,W.; Hong, J.; Kessels,W.; van de Sanden, M.; Arnoldbik,W.; Schlemm, H.; Devilée1, C.; Rieffe1, H.; Schiermeier1, S.; Bultman, J.;Weeber1, A. On Combining Surface and Bulk Passivation of SiNx: H Layers for mc-Si Solar Cells. In Proc. 29th IEEE Photovoltuic Specialists Conference, New Orleans, 2002; IEEE: New York, USA, 2002; 158-161.

    18. [18]

      (18) Cuevas, A.; Chen, F.; Tan, J.; Mackel, H.;Winderbaum, S.; Roth, K. FTIR Analysis of Microwave-Excited PECVD Silicon Nitride Layers. In 4thWorld Conference on Photovoltaic Energy Conversion,Waikoloa, Hawaii, 2006; IEEE: New York, USA, 2006; 1148-1151.

    19. [19]

      (19) Weeber, A.; Rieffe, H.; Romijn, I.; Sinke,W.; Soppe,W. The Fundamental Properties of SiNx:H That Determine Its Passivating Qualities. In 31st IEEE PVSC Conf, Florida, 2005; IEEE: New York, USA, 2005; 1043-1046.

    20. [20]

      (20) Robertson, J.;Warren,W.; Kanicki, J. J. Non-Cryst. Solids 1995, 187, 297.

    21. [21]

      (21) Hezel, R.; Jaeger, K. J. Electrochem. Soc 1989, 136 (2), 518.


  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(1803)
  • Abstract views(2584)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return