Citation: XIA Wen-Sheng, CHANG Gang, HOU Yu-Hui, WENG Wei-Zheng, WAN Hui-Lin. Influence of Ni Chemical States on the Partial Oxidation Mechanism of Methane: An Energetics Analysis[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1567-1573. doi: 10.3866/PKU.WHXB20110627 shu

Influence of Ni Chemical States on the Partial Oxidation Mechanism of Methane: An Energetics Analysis

  • Received Date: 1 April 2011
    Available Online: 6 May 2011

    Fund Project: 国家自然科学基金(21033006, 20923004) (21033006, 20923004) 福建省自然科学基金(2007J0168) (2007J0168)国家重点基础研究发展规划项目(973) (2010CB732303)资助 (973) (2010CB732303)

  • An energetics analysis of the possible elementary steps involved in the partial oxidation of methane (POM) over different chemical states of Ni was carried out using the unity bond index-quadratic exponential potential (UBI-QEP) method. The results show that the rate determining step for the partial oxidation mechanism of methane is related to the chemical state of the Ni. Over reduced Ni the rate determining step for CO formation is the association of surface CH3 species with surface O species. Over a partial positive charged Ni surface the rate determining step is that methane dissociates into the CHxO species with the assistance of oxygen. Over the reduced and partial positive charged Ni sites in coexistence, however, the rate determining step depends on the competition between the formation of surface CH3 species and the recombination of surface CH3 species with surface O species. This competition is related to the chemical states of the Ni sites. If the partial positive charged Ni sites are predominant on the surface, the recombination of surface C species with surface O species and the recombination of surface H atom species favor CO and H2 formation because of decreasing barriers. The surface CHx species does not dissociate easily and surface carbon deposition is significantly inhibited.

  • 加载中
    1. [1]

      (1) Trimm, D. L.; Onsan, Z. I. Catal. Rev. Sci. Eng. 2001, 43, 31.  

    2. [2]

      (2) Specchia, S.; Negro, G.; Saracco, G.; Specchia, V. Appl. Catal. B 2007, 70, 525.  

    3. [3]

      (3) Burke, N. R.; Trimm, D. L. Catal. Today 2006, 117, 248.  

    4. [4]

      (4) Enger, B. C.; Lodeng, R.; Holmen, A. Appl. Catal. A 2008, 346, 1.  

    5. [5]

      (5) York, A. P. E.; Xiao, T.; Green, M. L. H. Top. Catal. 2003, 22, 345.  

    6. [6]

      (6) Choudhary, T. V.; Choudhary, V. R. Angew. Chem. Int. Edit. 2008, 47, 1828.  

    7. [7]

      (7) Hu, Y. H.; Ruckenstein, E. Adv. Catal. 2004, 48, 297.  

    8. [8]

      (8) Lu, Y.; Xue, J. Z.; Yu, C. C.; Liu, Y.; Shen, S. K. Appl. Catal. A 1998, 174, 121.  

    9. [9]

      (9) Xu, J. G.; Froment, G. F. AICHE J. 1989, 35, 88.  

    10. [10]

      (10) Tang, S.; Lin, J.; Tan, K. L. Catal. Lett. 1998, 55, 83.  

    11. [11]

      (11) Rabe, S.; Nachtegaal, M.; Vogel, F. Phys. Chem. Chem. Phys. 2007, 9, 1461.

    12. [12]

      (12) Liu, Y.; Huang, F. Y.; Li, J. M.;Weng,W. Z.; Luo, C. R.;Wang, M. L.; Xia,W. S.; Huang, C. J.;Wan, H. L. J. Catal. 2008, 256, 192.  

    13. [13]

      (13) Shustorovich, E.; Sellers, H. Surf. Sci. Rept. 1998, 31, 1.  

    14. [14]

      (14) Shustorovich, E. Adv. Catal. 1990, 37, 101.  

    15. [15]

      (15) Rhodin, T. N.; Ertl, G. In The Nature of the Surface Chemical Bond; North-Holland Publ.: Amsterdam, 1979; Tables 5.1.

    16. [16]

      (16) Brennan, D.; Hayward, D. O.; Trapnell, B. M.W. Proc. R. Soc. London, Ser. A 1960, 256, 81.  

    17. [17]

      (17) In CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, Florida, 1984-1985; p F171.

    18. [18]

      (18) Xia,W. S.; Sellers, H. Surf. Sci. 2003, 524, 15.  

    19. [19]

      (19) Wei, J.; Iglesia, E. J. Catal. 2004, 224, 370.  

    20. [20]

      (20) Hu, Y. H.; Ruckenstein, E. Catal. Lett. 1999, 57, 167.  

    21. [21]

      (21) Theron, J. N.; Dry, M. E.; Steen, E. V.; Fletcher, J. C. Q. Stud. Surf. Sci. Catal. 1997, 107, 455.


  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    10. [10]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    11. [11]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    12. [12]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(999)
  • Abstract views(2707)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return