Citation: FANG Fang, LI Yong-Tao, SONG Yun, ZHA Jun, ZHAO Bin, SUN Da-Lin. LiMn(BH4)3/2LiCl Composite Synthesized by Reactive Ball-Milling and Its Dehydrogenation Properties[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1537-1542. doi: 10.3866/PKU.WHXB20110617 shu

LiMn(BH4)3/2LiCl Composite Synthesized by Reactive Ball-Milling and Its Dehydrogenation Properties

  • Received Date: 12 January 2011
    Available Online: 29 April 2011

    Fund Project: 国家自然科学基金(51001028) (51001028) 上海市自然科学基金(10ZR1404300) (10ZR1404300)

  • A LiMn(BH4)3/2LiCl composite was prepared by reactive ball-milling a mixture of LiBH4 and MnCl2, and its dehydrogenation properties were investigated. The results indicate that the LiMn(BH4)3/2LiCl composite consists of crystalline LiCl and amorphous LiMn(BH4)3, and decomposes at 135-190 °C with an activation energy of 114.0 kJ·mol-1, resulting in an emission of 7.0% (w) gas. The released gases contain 96.0% H2 and 4.0% B2H6 (mole fraction, x), which is the reason for why the mass loss of the LiMn(BH4)3/2LiCl composite is larger than that of theoretical hydrogen capacity of 6.3% (w). Moreover, the influence of various Ti-containing dopants on the decomposition of the LiMn(BH4)3/2LiCl composite was studied. We found that among TiF3, TiC, TiN, and TiO2, only TiF3 achieved a reduction in decomposition temperature. Compared with the undoped LiMn(BH4)3/2LiCl composite, the onset decomposition temperature and the activation energy of the TiF3-doped composite are reduced to 125 °C and to 104.0 kJ·mol-1, respectively. These are attributed to the formation of Ti(BH4)3 in some local regions of the TiF3-doped composite by the partial substitution of Ti for Li in LiMn(BH4)3.

  • 加载中
    1. [1]

      (1) Bogdanovic, B.; Eberle, U.; Felderhoff, M.; Schuth, F. Scripta Mater. 2007, 56, 813.

    2. [2]

      (2) Schlapbach, L.; Zuttel, A. Natrue 2001, 414, 353.

    3. [3]

      (3) Schuth, F.; Bogdanovic, B.; Felderhoff, M. Chem. Commun. 2004, 2249.

    4. [4]

      (4) Crabtree, G.W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39.

    5. [5]

      (5) Xiao, X. Z.; Chen, L. X.; Fan, X. L.; Ge, H.W.; Li, S. Q.; Ying, Y.;Wang, X. H.; Chen, C. P. Acta Phys. -Chim. Sin. 2008, 24, 423.

    6. [6]

      [肖学章, 陈立新, 范修林, 葛红卫, 李寿权, 应窕, 王新华, 陈长聘. 物理化学学报, 2008, 24, 423.]

    7. [7]

      (6) Xiao, X. Z.; Chen, L. X.;Wang, X. H.; Li, S. Q.; Chen, C. P. Acta Phys. -Chim. Sin. 2006, 22, 1511.

    8. [8]

      [肖学章, 陈立新, 王新华, 李寿权, 陈长聘. 物理化学学报, 2006, 22, 1511.]

    9. [9]

      (7) Fang, F.; Zheng, S. Y.; Chen, G. R.; Sang, G.; He, B.;Wei, S. Q.; Sun, D. L. Acta Mater. 2009, 57, 1959.

    10. [10]

      (8) Graetz, J.; Reilly, J. J.; Johnson, J.; Ignatov, A. Y.; Tyson, T. A. Appl. Phys. Lett. 2004, 85, 500. (9) Zheng, S. Y.; Fang, F.; Zhou, G. Y.; Chen, G. R.; Ouyang, L. Z.; Zhu, M.; Sun, D. L. Chem. Mater. 2008, 20, 3954.

    11. [11]

      (10) Gao, J.; Adelhelm, P.; Verkuijlen, M. H.W.; Rongeat, C.; Herrich, M.; van Bentum, P. J. M.; Gutfleisch, O.; Kentgens, A. P. M.; de Jong, K. P.; de Jongh, P. E. J. Phys. Chem. C 2010, 114, 4675.

    12. [12]

      (11) Lodziana, Z.; Zuttel, A.; Zielinski, P. J. Phys.-Condens. Mat. 2008, 20, 465210.

    13. [13]

      (12) Fang, Z. Z.; Ma, L. P.; Kang, X. D.;Wang, P. J.;Wang, P.; Cheng, H. M. Appl. Phys. Lett. 2009, 94, 044104.

    14. [14]

      (13) Cahen, S.; Eymery, J. B.; Janot, R.; Tarascon, J. M. J. Power Sources 2009, 189, 902.

    15. [15]

      (14) Zhang, Y. S.; Majzoub, E.; Ozolins, V.;Wolverton, C. Phys. Rev. B 2010, 82, 174107.

    16. [16]

      (15) Dunbar, A. C.; zum, J. E.; Girolami, G. S. J. Organomet. Chem. 2010, 695, 2804.

    17. [17]

      (16) Cerny, R.; Chul Kim, K.; Penin, N.; D′Anna, V.; Hagemann, H.; Sholl, D. S. J. Phys. Chem. C 2010, 114, 19127.

    18. [18]

      (17) Lee, J. Y.; Lee, Y. S.; Suh, J. Y.; Shim, J. H.; Cho, Y.W. J. Alloy. Compd. 2010, 506, 721.

    19. [19]

      (18) Nakamori, Y.; Miwa, K.; Ninomiya, A. Li, H.W.; Ohba, N.; Towata, S.; Zuttel, A.; Orimo, S. Phys. Rev. B. 2006, 74, 045126.

    20. [20]

      (19) Nakamori, Y.; Li, H.W.; Miwa, K.; Towata, S.; Orimo, S. Mater. Trans. 2006, 47, 1898.

    21. [21]

      (20) Nakamori, Y.; Li, H.W.; Kikuchi, K.; Aoki, M.; Miwa, K.; Towata, S.; Orimo, S. J. Alloy. Compd. 2007, 296-300, 446.

    22. [22]

      (21) Choudhury, P.; Srinivasan, S. S.; Bhethanabotla, V. R.; swami, Y.; McGrath, K.; Stefanakos, E. K. Int. J. Hydrog.

    23. [23]

      Energy 2009, 34, 6325.

    24. [24]

      (22) Varin, R. A.; Zbroniec L. Int. J. Hydrog. Energy 2010, 35, 3588.

    25. [25]

      (23) Guo, Y. H.; Yu, X. B.; Gao, L.; Xia, G. L.; Guo, Z. P.; Liu, H. K. Energy Environ. Sci. 2010, 3, 465

    26. [26]

      (24) Kissinger, H. E. Anal. Chem. 1957, 29, 1702.

    27. [27]

      (25) Kumar, N.; Yang, Y.; Noh,W.; Girolami, G. S.; Abelson, J. R. Chem. Mater. 2007, 19, 3802.


  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(1054)
  • Abstract views(2801)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return