Citation: DENG Ping, ZHANG Hai-Dong, JIANG Jun-Hao, JIANG Qi-Hua. Reaction Mechanism for Propylene Carbonate Prepared by KI/NH3 Catalysis from Propylene Oxide and CO2[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1386-1392. doi: 10.3866/PKU.WHXB20110615
-
The reaction mechanisms for the preparation of propylene carbonate (PC) from propylene oxide (PO) and CO2 in the absence of a catalyst or by catalysis using KI or KI/NH3 were studied in detail using density functional theory (DFT) at the B3LYP/6-311++G** level (I atom using the MIDIX basis set). The geometric configurations of the reactants, intermediates, transition states, and products were optimized. Vibration analysis and the intrinsic reaction coordinate (IRC) of the reactions proved that the intermediates and transition states predicted were present. The natural bond orbital (NBO) and atoms in molecules (AIM) theories were used to determine the orbital interactions and the bond nature at the same level. The results reveal that PO+CO2→M0a→TS0c→M0c→TS0c′→PC is the main reaction channel in the absence of the catalyst and it has a high energy barrier of 200.65 kJ·mol-1. The energy barrier is reduced to 187.40 kJ·mol-1 in the presence of KI, and it has a slow reaction rate. However, the energy barrier is reduced to 154.64 kJ·mol-1 and the reaction rate increases considerably upon promotion by KI/NH3, possibly because of the formation of hydrogen bonds between H in NH3 and O in CO2 or PO, which is in od agreement with the experimental results.
-
Keywords:
-
KI
, - NH3,
- Catalysis,
- Propylene oxide,
- Propylene carbonate,
- Reaction mechanism
-
-
-
[1]
(1) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
-
[2]
(2) Du, Y.; Kong, D. L.;Wang, H. Y.; Cai F.; Tian, J. S.;Wang, J. Q.; He, L. N. J. Mol. Catal. A: Chem. 2005, 241, 233.
-
[3]
(3) Zhao, Y.;Wang, J. J.; Xuan, X. M.; Zhuo, K. L. Acta Chim. Sin. 2006, 64, 2145.
-
[4]
[赵扬, 王键吉, 轩小明, 卓克垒. 化学学报, 2006, 64, 2145.]
-
[5]
(4) Wang, H.; Liu, S. G.; Zhang,W. Y.; Zhao, N.;Wei,W.; Sun, Y. H. Acta Chim. Sin. 2006, 64, 2409.
-
[6]
[王慧, 刘水钢, 张文郁, 赵宁, 魏伟, 孙予罕. 化学学报, 2006, 64, 2409.]
-
[7]
(5) Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
-
[8]
(6) Huang, S. Y.; Ma, J.; Li, J. P.; Zhao, L.;Wei,W.; Sun, Y. H. Catal. Commun. 2008, 9, 276.
-
[9]
(7) Zhao, X. Q.; Sun, N.;Wang, Y. J. Ind. Eng. Chem. Res. 2008, 47, 1365.
-
[10]
(8) Du, Y.; He, L. N.; Kong, D. L. Catal. Commun. 2008, 9, 1754.
-
[11]
(9) Sun, J.;Wang, L.; Zhang, S. J.; Li, Z.; Zhang, X. P.; Dai,W. B.; Mori, R. Appl. Catal. A: Gen. 2006, 256, 295.
-
[12]
(10) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526.
-
[13]
(11) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Appl. Catal. A: Gen. 2009, 363, 40.
-
[14]
(12) Sun, J.; Ren, J. Y.; Zhang, S. J.; Cheng,W. G. Tetrahedron Lett. 2009, 50, 423.
-
[15]
(13) Song, J. L.; Zhang, Z. F.; Hu, S. Q.;Wu, T. B.; Jiang, T.; Han, B. X. Green Chem. 2009, 11, 1031.
-
[16]
(14) Ji, D. F.; Lu, X. B.; He, R. Appl. Catal. A: Gen. 2000, 203, 329.
-
[17]
(15) Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Arai, M. Appl. Catal. A: Gen. 2001, 219, 259.
-
[18]
(16) Zevaco, T. A.; Janssen, A.; Dinjus, E. Arkivoc 2007, 151.
-
[19]
(17) Bu, Z.W.;Wang, Z. Q.; Qin, G.; Cui, Y. C.; Cao, S. K. Acta Chim. Sin. 2010, 68, 1871.
-
[20]
[卜站伟, 王志强, 秦刚, 崔元臣, 曹少魁. 化学学报, 2010, 68, 1871.]
-
[21]
(18) Huang, J.W.; Min, S. J. Org. Chem. 2003, 68, 6705.
-
[22]
(19) Zhou, X.; Yang, X. G.; Yao, J.;Wang, G. Y. Acta Chim. Sin. 2010, 68, 870.
-
[23]
[周喜, 杨先贵, 姚洁, 王公应. 化学学报, 2010, 68, 870.]
-
[24]
(20) Darensbourg, D. J.; Moncada, A. I. Inorg. Chem. 2008, 47, 10000.
-
[25]
(21) Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G. Chem. Eur. J. 2003, 9, 678.
-
[26]
(22) Guo, C. H.;Wu, H. S.; Zhang, X. M.; Song, J. Y.; Zhang, X. J. Phys. Chem. A 2009, 113, 6710.
-
[27]
(23) Sun, H.; Zhang, D. J. Phys. Chem. A 2007, 111, 8036.
-
[28]
(24) Lee, C.; Yang,W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
[29]
(25) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
-
[30]
(26) Reed, A. E.;Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. Chem. Phys. 1986, 84, 5687.
-
[31]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.02; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[32]
(28) Biegler-König, F.; Schönbohm, J.; Derdau, R.; Bayles, D.; Bader, R. F.W. AIM 2000, version 2.0; McMaster University: Hamilton, Ontario, Canada, 2002.
-
[1]
-
-
[1]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[7]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[8]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[9]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[10]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[11]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[12]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[15]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[16]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[17]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[18]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[19]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[20]
Yuanyi Lu , Jun Zhao , Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088
-
[1]
Metrics
- PDF Downloads(1180)
- Abstract views(3843)
- HTML views(14)