Citation: YE Tong-Qi, ZHANG Zhao-Xia, XU Yong, YAN Shi-Zhi, ZHU Jiu-Fang, LIU Yong, LI Quan-Xin. Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1493-1500. doi: 10.3866/PKU.WHXB20110610 shu

Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst

  • Received Date: 20 January 2011
    Available Online: 22 April 2011

    Fund Project: 国家自然科学基金(50772107) (50772107) 国家重点基础研究发展规划(973) (2007CB210206) (973) (2007CB210206)国家高技术研究发展计划(863) (2009AA05Z435)资助项目 (863) (2009AA05Z435)

  • Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas, which was derived from biomass gasification. The influence of Na content and synthesis conditions (temperature, pressure, and gas hourly space velocity (GHSV)) on higher alcohol synthesis was investigated. The CuCoMnNa0.1 catalyst gave the best performance for higher alcohol synthesis. Carbon conversion increased significantly with an increase in temperature at lower than 300 °C but alcohol selectivity showed an opposite trend. A higher pressure was found to be beneficial for higher alcohol synthesis. Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols. The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g·kg-1·h-1 with the C2+ alcohols (C2-C6 higher alcohols) of 64.4% (w, mass fraction) under the conditions used. The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory (ASF) plots. Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements, copper and cobalt. X-ray photoelectron spectroscopy (XPS) results suggested that Cu was present as a mixture of Cu+ and Cu0 on the catalyst′s surface after use and Co was present as a mixture of Co2+/Co3+ and Co0. With an increase in sodium addition the Cu0/Cu+ ratio and the Co0 intensity both decreased.

  • 加载中
    1. [1]

      (1) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107, 3952.

    2. [2]

      (2) Zhang, Q.; Chang, J.;Wang, T. J.; Xu, Y. Energy Convers. Manage. 2007, 48, 87

    3. [3]

      (3) Li, H. Y.; Xu, Q. L.; Xue, H. S.; Yan, Y. J. Renewable Energy 2009, 34, 2872.

    4. [4]

      (4) Czernik, S.; Bridgwater, A. V. Energy & Fuels 2004, 18, 590.

    5. [5]

      (5) Zhou, M.; Yan, L. F.;Wang, Y. Q.; Guo, Q. X.; Zhu, Q. S. Chin. J. Chem. Phys. 2005, 18, 69.

    6. [6]

      [周密, 闫立峰, 王益群, 郭庆祥, 朱清时. 化学物理学报, 2005, 18, 69.]

    7. [7]

      (6) Tijmensen, M. J. A.; Faaij, A. P. C.; Hamelinck, C. N.; Van Hardeveld, M. R. M. Biomass Bioenergy 2002, 23, 129.

    8. [8]

      (7) Steen, E. V.; Claeys, M. Chem. Eng. Technol. 2008, 31, 655.

    9. [9]

      (8) Xu, X. D.; Doesburg, E. B. M.; Sckolen, J. J. F. Catal. Today 1987, 2, 125.

    10. [10]

      (9) Verkerk, A. N.; Jaeger, B.; Finkeldei, C. H.; Keim,W. Appl. Catal. A 1999, 186, 407.

    11. [11]

      (10) Subramani, V.; Gangwal, S. K. Energy & Fuels 2008, 22, 814.

    12. [12]

      (11) Li, Z. R.; Fu, Y. L.; Jiang, M.; Hu, T. D.; Liu, T.; Xie, Y. N. Chin. J. Chem. Phys., 2001, 14, 355.

    13. [13]

      [李忠瑞, 伏义路, 姜明, 胡天斗, 刘涛, 谢亚宁. 化学物理学报, 2001, 14, 355.]

    14. [14]

      (12) Zhang,W.; Luo, H. Y.; Zhou, H.W.;Wu, Z. H.; Huang, S. Y.; Liu, C. Z.; Chu, H. P.; Lin, P. Z.; Lin, L.W. Chin. J. Catal. 1999, 20, 285.

    15. [15]

      [张伟, 罗洪源, 周焕文, 吴治华, 黄世煜, 刘崇早, 初惠萍, 林培滋, 林励吾. 催化学报, 1999, 20, 285.]

    16. [16]

      (13) Ojeda, M.; Granados, M. L.; Rojas, S.; Terreros, P.; Garcia-Garcia, F. J.; Fierro, J. L. G. Appl. Catal. A 2004, 261, 47.

    17. [17]

      (14) Boz, I. Catal. Lett. 2003, 87, 187.

    18. [18]

      (15) Tien-Thao, N.; Zahedi-Niaki, M. H.; Alamdari, H.; Kaliaguine, S. J. Catal. 2007, 245, 348.

    19. [19]

      (16) Dalmona, J. A.; Chaumetteb, P.; Mirodatos, C. Catal. Today 1992, 15, 101.

    20. [20]

      (17) Su, Y. L.; Liu, B.; Pei, S. P.;Wang, X. Y.; Liu, Z. M. Chin. J. Catal. 2004, 25, 683.

    21. [21]

      [苏运来, 刘博, 裴素朋, 王向宇, 刘中民. 催化学报, 2004, 25, 683.]

    22. [22]

      (18) Xu, R.;Wei,W.; Li,W. H.; Hu, T. D.; Sun, Y. H. J. Mol. Catal. A 2005, 234, 75.

    23. [23]

      (19) Gupta, M.; Spivey, J. J. Catal. Today 2009, 147, 126.

    24. [24]

      (20) Chen, X. P.;Wu, G. S.;Wang, X. Z.; Sun, Y. H.; Zhong, B. Chin. J. Catal. 2000, 21, 301.

    25. [25]

      [陈小平, 吴贵升, 王秀芝, 孙予罕, 钟炳. 催化学报, 2000, 21, 301.]

    26. [26]

      (21) Li, D. B.; Qi, H. J.; Li,W. H.; Sun, Y. H.; Zhong, B. Acta Phys. -Chim. Sin. 2006, 22, 1132.

    27. [27]

      [李德宝, 齐会杰, 李文怀, 孙予罕, 钟炳. 物理化学学报, 2006, 22, 1132.]

    28. [28]

      (22) Ma, X. M.; Lin, G. D.; Zhang, H. B. Chin. J. Catal. 2006, 27, 1019.

    29. [29]

      [马晓明, 林国栋, 张鸿斌. 催化学报, 2006, 27, 1019.]

    30. [30]

      (23) Sugier, A.; Freund, E.; Malmaison, R. Process for Manufacturing Alcohols and More Particularly Saturated Linear

    31. [31]

      Primary Alcohols from Synthesis Gas. US Pat. Appl. 105312, 1981.

    32. [32]

      (24) Spivey, J. J.; Kumar, C. S. S. R.; Balaji, G.; Subramanian, N. D. Catal. Today 2009, 147, 100.

    33. [33]

      (25) Xu, H. Y.; Chu,W.; Deng, S. Y. Acta Phys. -Chim. Sin. 2010, 26, 345.

    34. [34]

      [徐慧远, 储伟, 邓思玉. 物理化学学报, 2010, 26, 345.]

    35. [35]

      (26) Mehr, J. Y.; Islami, M.; Peyrovi, M. H.; Mahdavi, V. Appl. Catal. A 2005, 281, 259.

    36. [36]

      (27) Zhang, H. B.; Dong, X.; Lin, G. D.; Liang, X. L.; Li, H. Y. Chem. Commun. 2005, 5094.

    37. [37]

      (28) Kan, T.; Xiong, J. X.; Li, X. L.; Ye, T. Q.; Yuan, L. X.; Torimoto, Y.; Yamamoto, M.; Li, Q. X. Int. J. Hydrog. Energy 2010, 35, 518.

    38. [38]

      (29) Yuan, L. X.; Chen, Y. Q.; Song, C. F.; Ye, T. Q.; Guo, Q. X.; Zhu, Q. S.; Torimoto, Y.; Li, Q. X. Chem. Commun. 2008, 41, 5215.

    39. [39]

      (30) Ye, T. Q.; Yuan, L. X.; Chen, Y. Q.; Kan, T.; Tu, J.; Zhu, X. F.; Torimoto, Y.; Yamamoto, M.; Li, Q. X. Catal. Lett. 2009, 127, 323.

    40. [40]

      (31) Liu, Y.; Chen, F.; Zhuang, S. X.;Wang, J.; Ma, R. CN Patent CN101191060A, 2007.

    41. [41]

      [刘勇, 陈枫, 庄叔贤, 王家俊, 马仁贵. 一种由固体生物质制备合成气的方法和设备: 中国, CN101191060A, 2007]

    42. [42]

      (32) Aquino, A. D.; Cobo, A. J. G. Catal. Today 2001, 65, 209.

    43. [43]

      (33) Chen, B. S.; Zhao, J. S.; Zhang, L.; Xiong, G. X.; Sheng, S. S. Chin. J. Catal. 1990, 11, 265.

    44. [44]

      [陈宝树, 赵九生, 张鎏, 熊国兴, 盛世善. 催化学报, 1990, 11, 265.]

    45. [45]

      (34) Li, S.; Li, A.; Krishnamoorthy, S.; Iglesia, E. Catal. Lett. 2001, 77, 197.

    46. [46]

      (35) Mross,W. D. Catal. Rev. Sci. Eng. 1983, 25, 591.

    47. [47]

      (36) Courty, P.; Durand, D.; Freund, E.; Sugier, A. J. Mol. Catal. 1982, 17, 241.

    48. [48]

      (37) Laan, G. P. V.; Beenackers, A. A. C. M. Catal. Rev. Sci. Eng. 1999, 41, 255.

    49. [49]

      (38) Sachtler,W. M. H.; Ichikawa, M. J. Phys. Chem. 1986, 90, 4752.

    50. [50]

      (39) Dry, M. E. Catal. Today 2002, 71, 227.

    51. [51]

      (40) Huang, X.; Curtis, C.W.; Roberts, C. B. Fuel Chemistry Division Preprints 2002, 47, 150.

    52. [52]

      (41) Schulz, H. Appl. Catal. A 1999, 186, 3.

    53. [53]

      (42) Yang, B. L.; Chan, S. F.; Chang,W. S.; Chen, Y. Z. J. Catal. 1991, 130, 52.

    54. [54]

      (43) Li, D. B.; Yang, C.; Li,W. H.; Sun, Y. H.; Zhong, B. Top. Catal. 2005, 32, 233.

    55. [55]

      (44) Velu, S.; Suzuki, K.; pinath, C. S. J. Phys. Chem. B 2002, 106, 12737


  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    17. [17]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(1044)
  • Abstract views(2572)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return