Citation:
	            
		            CHENG  Feng, HUANG  Ke-Long, LIU  Su-Qin, FANG  Xue-Song, ZHANG  Xin. Surfactant Carbonization to Synthesize a Fe3O4/C Composite and Its Electrochemical Performance[J]. Acta Physico-Chimica Sinica,
							;2011, 27(06): 1439-1445.
						
							doi:
								10.3866/PKU.WHXB20110607
						
					
				
					
				
	        
- 
	                	
Oleic acid-capped α-Fe2O3 nanoparticles were initially prepared as precursors by a simple hydrothermal method. Fe3O4/C nanocomposites were synthesized by annealing the precursor at 500 °C for 1 h under an Ar atmosphere. The surface organic groups and core phase structure of the samples were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), respectively. Scanning electron microscopy (SEM) was used to observe their morphology. The existence of carbon was confirmed by elemental analysis, energy-dispersive X-ray (EDX) spectroscopy and high-resolution transmission electron microscopy (HRTEM). Cyclic voltammetry (CV) and galvanostatic discharge/charge measurements were used to evaluate the electrochemical performance of the as-prepared Fe3O4/C nanocomposites. The results showed that Fe3O4/C nanocomposites were spindles alike with a length of about 200 nm and a diameter of about 100 nm. A carbon layer of 1-2 nm in thickness was coated on the surface of the Fe3O4 nanocrystals and the carbon content was 1.956% (mass fraction). As anode materials for lithium-ion batteries, the composite exhibited excellent cycling performance (691.7 mAh·g-1 after 80 cycles at 0.2C (1C=928 mA·g-1)) and rate capability (520 mAh·g-1 after 20 cycles at 2C). Compared with commercial Fe3O4 particles, the remarkably improved electrochemical performance of the Fe3O4/C composites was attributed to in situ carbon coating, which prevented nanoparticle aggregation, increased electronic conductivity and stabilized the solid electrolyte interface (SEI) films.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
 - 
			
                    [2]
                
			
(2) Needham, S. A.;Wang, G. X.; Konstantinov, K.; Tournayre, Y.; Lao, Z.; Liu, H. K. Electrochem. Solid-State Lett. 2006, 9 (7), A315.
 - 
			
                    [3]
                
			
(3) Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Zhou, F. Electrochim. Acta 2010, 55, 8981.
 - 
			
                    [4]
                
			
(4) Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P. Electrochem. Commun. 2010, 12, 1103.
 - 
			
                    [5]
                
			
(5) Ohzuku, T.; Pistoia, G. Lithium Batteries: New Materials, Developments and Perspectives; Elsevier: Amsterdam, 1994; pp: 239-280.
 - 
			
                    [6]
                
			
(6) Coey, J. M. D.; Berkowitz, A. E.; Balcells, L.; Putris, F.F.; Parker, F. T. Appl. Phys. Lett. 1998, 72 (6), 734.
 - 
			
                    [7]
                
			
(7) Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M. Adv. Funct. Mater. 2006, 16, 2281.
 - 
			
                    [8]
                
			
(8) Zhang,W. M.;Wu, X. L.; Hu, J. S.; Guo, Y. G.;Wan, L. J. Adv. Funct. Mater. 2008, 18, 3941.
 - 
			
                    [9]
                
			
(9) Muraliganth, T.; Murugan, A. V.; Manthiram, A. Chem. Commun. 2009, 7360.
 - 
			
                    [10]
                
			
(10) Piao, Y.; Kim, H. S.; Sung, Y. E.; Hyeon, T. Chem. Commun. 2010, 46, 118.
 - 
			
                    [11]
                
			
(11) Liu, H.;Wang, X. L.; Hu, J. S.;Wexler, D. Electrochem. Commun. 2008, 10, 1879.
 - 
			
                    [12]
                
			
(12) Cui, Z. M.; Jiang, L. Y.; Song,W. G.; Guo, Y. G. Chem. Mater. 2009, 21, 1162.
 - 
			
                    [13]
                
			
(13) Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascona, J. M. J. Electrochem. Soc. 2001, 148 (4), A285.
 - 
			
                    [14]
                
			
(14) Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.;Wang, Y. G.;Wang, T. H. J. Mater. Chem. 2010, 20, 5538.
 - 
			
                    [15]
                
			
(15) Cao, Q.; Zhang, H. P.;Wang, G. J.; Xia, Q.;Wu, Y. P.;Wu, H. Q. Electrochem. Commun. 2007, 9, 1228.
 - 
			
                    [16]
                
			
(16) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609.
 - 
			
                    [17]
                
			
[苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.]
 - 
			
                    [18]
                
			
(17) Wang, L. J.; Zhou, X. C.; Guo, Y. L. J. Power Sources 2010, 195, 2844.
 - 
			
                    [19]
                
			
(18) Zhu, H.;Wang, B.; Shen, J. M.; Kang, X. H.; Guo, H. F.; Zhu, L. Acta Phys. -Chim. Sin. 2006, 22, 552.
 - 
			
                    [20]
                
			
[朱红, 王滨, 申靓梅, 康晓红, 郭洪范, 朱磊. 物理化学学报, 2006, 22, 552.]
 - 
			
                    [21]
                
			
(19) Söderlind, F.; Pedersen, H.; Petoral, R. M.; Käll, P. O.; Uvdal, K. J. Colloid Interface Sci. 2005, 288, 140.
 - 
			
                    [22]
                
			
(20) Chikate, R. C.; Jun, K.W.; Rode, C. V. Polyhedron 2008, 27, 933.
 - 
			
                    [23]
                
			
(21) Chen, J.; Huang, K. L.; Liu, S. Q. Chin. J. Inorg. Chem. 2008, 24, 621.
 - 
			
                    [24]
                
			
[陈洁, 黄可龙, 刘素琴. 无机化学学报, 2008, 24, 621.]
 - 
			
                    [25]
                
			
(22) Wang, L. L.; Gao, L. J. Phys. Chem. C 2009, 113, 15914.
 - 
			
                    [26]
                
			
(23) Wang, S. Q.; Zhang, J. Y.; Chen, C. H. J. Power Sources 2010, 195, 5379.
 - 
			
                    [27]
                
			
(24) Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarasconet, J. M. J. Electrochem. Soc. 2002, 149 (5), A627.
 - 
			
                    [28]
                
			
(25) Shyamal, K. D.; Manu, P.; Aninda, J. B. Appl. Mater. Interfaces 2010, 2 (7), 2091.
 - 
			
                    [29]
                
			
(26) Armand, M.; Tarascon, J. M. Nature 2008, 451, 7.
 - 
			
                    [30]
                
			
(27) Liu, H. J.; Bo, S. H.; Cui,W. J.; Li, F.;Wang, C. X.; Xia, Y. Y. Electrochim. Acta 2008, 53, 6497.
 - 
			
                    [31]
                
			
(28) Duan, H. N.; Gnanaraj, J.; Chen, X. P.; Li, B. Q.; Liang, J. Y. J. Power Sources 2008, 185, 512.
 - 
			
                    [32]
                
			
(29) Zhang, M.; Yin, X. M.; Du, Z. F.; Liu, S.; Chen, L. B.; Li, Q. H.; Jin, H.; Peng, K.;Wang, T. H. Solid State Sci. 2010, 12, 2024.
 - 
			
                    [33]
                
			
(30) Jiao, F.; Bao, J. L.; Bruce, P. G. Electrochem. Solid-State Lett. 2007, 10, A264.
 - 
			
                    [34]
                
			
(31) Zhu, G. N.;Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2011, 158 (2), A102.
 - 
			
                    [35]
                
			
(32) Lin, B.;Wen, Z. Y.;Wang, X. Y.; Liu, Y. J. Solid State Electrochem. 2010, 14, 1807.
 - 
			
                    [36]
                
			
(33) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97-98 (Suppl. SI), 235.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
 - 
				[2]
				
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
 - 
				[3]
				
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
 - 
				[4]
				
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
 - 
				[5]
				
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
 - 
				[6]
				
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
 - 
				[7]
				
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
 - 
				[8]
				
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
 - 
				[9]
				
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
 - 
				[10]
				
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
 - 
				[11]
				
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
 - 
				[12]
				
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
 - 
				[13]
				
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
 - 
				[14]
				
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
 - 
				[15]
				
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
 - 
				[16]
				
Xue Xiao , Jiachun Li , Xiangtong Meng , Jieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006
 - 
				[17]
				
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
 - 
				[18]
				
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
 - 
				[19]
				
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
 - 
				[20]
				
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1704)
 - Abstract views(2898)
 - HTML views(11)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: