Citation: LI Yan-Feng, ZHU Ji-Qin, LIU Hui, HE Peng, WANG Peng, TIAN Hui-Ping. Theoretical Study of the Double-Bond Isomerization of 1-Hexene to cis-2-Hexene over ZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1081-1088. doi: 10.3866/PKU.WHXB20110516 shu

Theoretical Study of the Double-Bond Isomerization of 1-Hexene to cis-2-Hexene over ZSM-5 Zeolite

  • Received Date: 6 January 2011
    Available Online: 1 April 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2010CB732301)资助 (973) (2010CB732301)

  • We investigated the double-bond isomerization reaction of 1-hexene to cis-2-hexene on the surface of ZSM-5 zeolite using density functional theory with a 54T cluster model simulating the local structures of zeolite materials. We found that the double-bond isomerization proceeded by a mechanism that did not involve the bifunctional (acid-base) nature of the zeolite active sites but exclusively involved the Brønsted acid sites. According to this mechanism, 1-hexene is the first physically adsorbed onto the zeolite acid site resulting in the formation of a π-complex, and then the acidic proton of the zeolite transfers to a carbon atom of the double bond of the physisorbed 1-hexene. The other carbon atom of the double bond of the physisorbed 1-hexene bonds with the Brønsted host oxygen and yields a stable alkoxy intermediate. Thereafter, the Brønsted host oxygen abstracts a hydrogen atom from the C6H13 fragment and the C―O bond of the alkoxy intermediate is broken, which restores the zeolite active site and yields physisorbed cis-2-hexene. The proposed reaction pathway competes with the bifunctional pathway. The rate- determining step is the decomposition of the alkoxy intermediate with an activation energy of 134. 64 kJ·mol-1. The calculated apparent activation energy for the isomerization reaction is 59. 37 kJ·mol-1, which is in od agreement with the reported experimental value. These results well explain the energetic aspects during the double-bond isomerization and extend the understanding of the nature of zeolite active sites.

  • 加载中
    1. [1]

      (1) Wang, W. L.; Liu, B. J.; Zeng, X. J. Acta Phys. -Chim. Sin. 2008, 24, 2102.

    2. [2]

      [王文兰, 刘百军, 曾贤君. 物理化学学报, 2008, 24, 2102. ]

    3. [3]

      (2) Vermeiren, W.; Gilson, J. P. Top. Catal. 2009, 52, 1131.

    4. [4]

      (3) Kazansky, V. B. Acc. Chem. Res. 1991, 24, 379.

    5. [5]

      (4) Perez-Luna, M.; Cosultchi, A.; Toledo-Antonio, J. A.; Diaz-Garcia, L. Catal. Lett. 2009, 128, 290.

    6. [6]

      (5) Song, Y.; Bai, J.; Wu, Z. H.; Zhai, Y. C.; Xu, L. Y. Nat. Gas Chem. Ind. 2005, 30, 1.

    7. [7]

      [宋 毅, 白 杰, 吴治华, 翟玉春, 徐龙伢. 天然气化工, 2005, 30, 1. ]

    8. [8]

      (6) Zheng, A.; Wang, L.; Chen, L.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Phys. Chem. 2007, 8, 231.

    9. [9]

      (7) Lechert, H.; Dimitrov, C.; Bezuhanova, C.; Nenova, V. J. Catal. 1983, 80, 457.

    10. [10]

      (8) Bezouhanova, C.; Lechert, H.; Taralanska, G.; Meyer, A. React. Kinet. Catal. Lett. 1989, 40, 209.

    11. [11]

      (9) Abbot, J.; Corma, A.; Wojciechowski, B. W. J. Catal. 1985, 92, 398.

    12. [12]

      (10) Campbell, I. M. Catalysis at Surfaces, 1st ed.; Chapman and Hall: New York, 1988; pp 174-178.

    13. [13]

      (11) Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions, 1st ed.; Academic Press: New York, 1981; pp 29-33.

    14. [14]

      (12) Burwell, R. L.; Shim, K. C.; Rowlinsox, H. C. J. Am. Chem. Soc. 1957, 79, 5142.

    15. [15]

      (13) Brouwer, D. M. J. Catal. 1962, 1, 22.

    16. [16]

      (14) Haw, J. F.; Richardson, B. R.; Oshiro, I. S.; Lazo, N. D.; Speed, J. A. J. Am. Chem. Soc. 1989, 111, 2052.

    17. [17]

      (15) Kondo, J. N.; Wakabayashi, F.; Domen, K. Catal. Lett. 1998, 53, 215.

    18. [18]

      (16) Pu, M.; Li, Z. H.; Zhai, S. R.; Wu, D.; Sun, Y. H. Stud. Surf. Sci. Catal. 2003, 146, 737.

    19. [19]

      (17) Pu, M.; Li, Z. H.; ng, Y. J.; Wu, D.; Sun, Y. H. J. Mater. Sci. Lett. 2003, 22, 955.

    20. [20]

      (18) Li, H. Y.; Pu, M.; Chen, B. H. Acta Phys. -Chim. Sin. 2005, 21, 898.

    21. [21]

      [李会英, 蒲 敏, 陈标华. 物理化学学报, 2005, 21, 898. ]

    22. [22]

      (19) Benco, L.; Demuth, T.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Catal. 2002, 205, 147.

    23. [23]

      (20) Bhan, A.; Joshi, Y. V.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2003, 107, 10476.

    24. [24]

      (21) Li, Y. F.; He, P.; Zhu, J. Q.; Liu, H.; Shao, Q.; Tian, H. P. J. Mol. Struc-theochem 2010, 940, 135.

    25. [25]

      (22) Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc. 2004, 126, 3300.

    26. [26]

      (23) Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B 2006, 110, 25950.

    27. [27]

      (24) Zheng, A.; Chen, L.; Yang, J.; Zhang, M.; Su, Y.; Yue, Y.; Ye, C.; Deng, F. J. Phys. Chem. B 2005, 109, 24273.

    28. [28]

      (25) Zheng, A.; Chen, L.; Yang, J.; Yue, Y.; Ye, C.; Lu, X.; Deng, F. Chem. Commun. 2005, 19, 2474.

    29. [29]

      (26) Zheng, A.; Liu, S. B.; Deng, F. Microporous Mesoporous Mat. 2009, 121, 158.

    30. [30]

      (27) Jacobs, P. A.; Martens, J. A.; Weitkamp, J.; Beyer, H. K. Faraday Discuss. Chem. Soc. 1981, 72, 353.

    31. [31]

      (28) Mortier, W. J.; Sauer, J.; Lercher, J. A.; Noller, H. J. Phys. Chem. 1984, 88, 905.

    32. [32]

      (29) Trombetta, M.; Armaroli, T.; Alejandre, A. G.; Solis, J. R.; Busca, G. Appl. Catal. A-Gen. 2000, 192, 125.

    33. [33]

      (30) Lomratsiri, J.; Probst, M.; Limtrakul, J. J. Mol. Graphics Modell. 2006, 25, 219.

    34. [34]

      (31) Lermer, H.; Draeger, M.; Steffen, J.; Unger, K. K. Zeolites 1985, 5, 131.

    35. [35]

      (32) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    36. [36]

      (33) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    37. [37]

      (34) Pantu, P.; Pabchanda, S.; Limtrakul, J. Chem. Phys. Chem. 2004, 5, 1901.

    38. [38]

      (35) Bobuatong, K.; Limtrakul, J. Appl. Catal. A-Gen. 2003, 253, 49.

    39. [39]

      (36) Kasuriya, S.; Namuangruk, S.; Treesukol, P.; Tirtowidjojo, M.; Limtrakul, J. J. Catal. 2003, 219, 320.

    40. [40]

      (37) Panjan, W.; Limtrakul, J. J. Mol. Struct. 2003, 654, 35.

    41. [41]

      (38) Namuangruk, S.; Tantanak, D.; Limtrakul, J. J. Mol. Catal. A: Chem. 2006, 256, 113.

    42. [42]

      (39) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.

    43. [43]

      (40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D. 01; Gaussian Inc. : Wallingford, CT, 2004.

    44. [44]

      (41) Föttinger, K.; Kinger, G.; Vinek, H. Appl. Catal. A: Gen. 2003, 249, 205.

    45. [45]

      (42) Krossner, M.; Sauer, J. J. Phys. Chem. 1996, 100, 6199.

    46. [46]

      (43) Viruela-Martin, P.; Zicovich-Wilson, C. M.; Corma, A. J. Phys. Chem. 1993, 97, 13713.

    47. [47]

      (44) Clark, M. C.; Subramaniam, B. AIChE J. 1999, 45, 1559.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    9. [9]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    10. [10]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    11. [11]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(1075)
  • Abstract views(2785)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return