Citation: LI Huan-Huan, CHEN Run-Feng, MA Cong, ZHANG Sheng-Lan, AN Zhong-Fu, HUANG Wei. Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1017-1025. doi: 10.3866/PKU.WHXB20110514 shu

Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells

  • Received Date: 22 October 2010
    Available Online: 1 April 2011

    Fund Project: 国家自然青年科学基金项目(20804020) (20804020)江苏省高校自然科学基础研究面上项目(08KJB150012) (08KJB150012)国家重点基础研究发展计划项目(973)(2009CB930600)资助 (973)(2009CB930600)

  • We review the history, fabrication procedures, and mechanisms of TiO2 nanotubes prepared by the anodic oxidation of titanium. The influence of various preparation factors, such as electrolytes, pH value, voltage, bath temperature, and post treatment, on the structure and morphology of the TiO2 nanotubes are discussed. This review also summarizes the application of TiO2 nanotubes to dye-sensitized solar cells, quantum dot solar cells, and bulk heterojunction solar cells. A perspective on the future development of TiO2 nanotubes and their applications is tentatively discussed.

  • 加载中
    1. [1]

      (1) Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891.

    2. [2]

      (2) Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv. Mater. 2006, 18(21), 2807.

    3. [3]

      (3) Grimes, C. A. J. Mater. Chem. 2007, 17(15), 1451.

    4. [4]

      (4) Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. J. Electrochem. Soc. 2003, 150(8), G488.

    5. [5]

      (5) Varghese, O. K.; ng, D. W.; Paulose, M.; Ong, K. G.; Grimes, C. A. Adv. Mater. 2003, 15(7-8), 624.

    6. [6]

      (6) Varghese, O. K.; ng, D. W.; Paulose, M.; Ong, K. G.; Grimes, C. A. Sens. Actuators B: Chem. 2003, 93(1-3), 338.

    7. [7]

      (7) Gao, X. F.; Sun, W. T.; Hu, Z. D.; Ai, G.; Zhang, Y. L.; Feng, S.; Li, F.; Peng, L. M. J. Phys. Chem. C 2009, 113(47), 20481.

    8. [8]

      (8) Yodyingyong, S.; Zhou, X. Y.; Zhang, Q. F.; Triampo, D.; Xi, J. T.; Park, K.; Limketkai, B. J.; Cao, G. Z. J. Phys. Chem. C 2010, 114(49), 21851.

    9. [9]

      (9) Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol. Energ. Mat. Sol. 2006, 90, 2011.

    10. [10]

      (10) Ok, S. Y.; Cho, K. K.; Kim, K. W.; Ryu, K. S. Physica Scripta. 2010, 2010(T139), 014052.

    11. [11]

      (11) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2005, 5(1), 191.

    12. [12]

      (12) Fujishima, A.; Honda, K. Nature 1972, 238(5358), 37.

    13. [13]

      (13) Paulose, M.; Mor, G. K.; Varghese, O. K.; Shankar, K.; Grimes, C. A. J. Photoch. Photobio. A- Chem. 2006, 178(1), 8.

    14. [14]

      (14) Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6(1), 24.

    15. [15]

      (15) Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. J. Phys. Chem. C. 2007, 111(24), 8677.

    16. [16]

      (16) Wang, M.; Guo, D. J.; Li, H. L. Solid. State Chem. 2005, 178(6), 1996.

    17. [17]

      (17) Xie, Y. B. Electrochim. Acta 2006, 51(17), 3399.

    18. [18]

      (18) Gaya, U. I.; Abdullah, A. H. Photoch Photobio C. 2008, 9(1), 1.

    19. [19]

      (19) Zhang, Z. H.; Yuan, Y; Shi, G. Y.; Fang, Y. J.; Liang, L. H.; Ding, H. C.; Jin, L. T. Environ. Sci. Technol. 2007, 41(17), 6259.

    20. [20]

      (20) Chen, Y. S.; Crittenden, J. C.; Hackney, S.; Sutter, L.; Hand, D. W. Environ. Sci. Technol. 2005, 39(5), 1201.

    21. [21]

      (21) Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P. Nano Lett. 2007, 7(5), 1286.

    22. [22]

      (22) Hoyer, P. Langmuir. 1996, 12(6), 1411.

    23. [23]

      (23) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir. 1998, 14(12), 3160.

    24. [24]

      (24) ng, D.; Grimes, C. A.; Varghese, O. K. J. Mater. Res. 2001, 16(12), 3331.

    25. [25]

      (25) Pol, V. G.; Langzam, Y.; Zaban, A. Langmuir 2007, 23(22), 11211.

    26. [26]

      (26) Luo, B. M.; Yang, H. B.; Liu, S. K.; Fu, W. Y.; Sun, P; Yuan, M. X.; Zhang, Y. Y.; Liu, Z. L. Mater. Lett. 2008, 62(30), 4512.

    27. [27]

      (27) Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Curr. Opin. Solid State Mater. Sci. 2007, 11(1-2), 3.

    28. [28]

      (28) Mohapatra, S. K.; Raja, K. S.; Misra, M.; Mahajan, V. K.; Ahmadian, M. Electrochim Acta. 2007, 53(2), 590.

    29. [29]

      (29) Sul, Y. T.; Johanasson, C. B.; Jeong, Y.; Albrektsson, T. Eng. Phys. 2001, 23(5), 329.

    30. [30]

      (30) Zwilling, V. E.; Ceretti, D.; Forveille, A. B.; David, D; Perrin, M. Y. Surf. Interface Anal. 1999, 27(7), 629.

    31. [31]

      (31) Delplancke, J. L.; Winand, R. Electrochim. Acta 1988, 33(11), 1551.

    32. [32]

      (32) Hwang, B. J.; Hwang, J. R. J. Appl Electrochem. 1993, 23(10), 1056.

    33. [33]

      (33) Parkhutik, V. P.; Shershulsky, V. I. J. Phys. D-Appl. Phys. 1992, 25(8), 1258

    34. [34]

      (34) Thompson, G. E. Thin Solid Films 1997, 297(1-2), 192.

    35. [35]

      (35) Liu, S. K. Fabrication, Character and Their Photoelectrochemical Performance of TiO2-based Nanotube arrays. Ph. D. Dissertation. , Jinlin, Uinlin university, 2009.

    36. [36]

      [刘世凯, TiO2 基纳米管阵列的构筑表征及其光电化学性质研究

    37. [37]

      [D]. 吉林: 吉林大学, 2009.]

    38. [38]

      (36) Mor, G. K.; Varghese, O. K.; Paulose, M.; Mukherjee, N.; Grimes, C. A. J. Mater. Res. 2003, 18(11), 2588.

    39. [39]

      (37) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Mater. Res. 2005, 20(1), 230.

    40. [40]

      (38) Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A. J. Phys. Chem. C 2007, 111(41), 14992.

    41. [41]

      (39) Raja, K. S.; Misra, M.; Paramguru, K. Electrochim Acta 2005, 51(1), 154.

    42. [42]

      (40) Likodimos, V.; Stergiopoulos, T.; Falaras, P. J. Phys. Chem. C 2008, 112(33), 12687.

    43. [43]

      (41) Pakes, A; Thompson, G. E.; Skeldon, P.; Morgan, P. C. Corros. Sci. 2003, 45(6), 1275.

    44. [44]

      (42) Zhao, J. L.; Wang, X. H.; Chen, R. Z.; Li, L. T. Solid State Commun. 2005, 134(10), 705

    45. [45]

      (43) Lai, Y. K.; Sun, L.; Chen, C.; Nie, C. G.; Zuo , J.; Lin, C. J. Appl. Surf. Sci. 2005, 252(4), 1101.

    46. [46]

      (44) Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110(33), 16179.

    47. [47]

      (45) Albu, S. P.; Ghicov, A, ; Macak, J. M.; Schmuki, P. Phys. Status Solide-Rapid Res. Leet. 2007, 1(2), R65

    48. [48]

      (46) ng, D.; Grimes, C. A.; Varghese, O. K. J. Mater. Res. 2001, 16(12), 3331.

    49. [49]

      (47) Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Sensor Letters 2003, 1(1), 42.

    50. [50]

      (48) Yang, D. J.; Kim, H. G.; Cho, S. J.; Choi, W. Y. Mater. Lett. 2008, 62(4-5), 775.

    51. [51]

      (49) Macak, J. M.; Sirotna, K.; Schmuki, P. Electrochim. Acta 2005, 50(18), 3679

    52. [52]

      (50) Jaroenworaluck, A.; Re nini, D.; Bowen, C. R.; Stevens, R.; Allsopp, D. J. Mater Sci. 2007, 42(16), 6729.

    53. [53]

      (51) Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111(20), 7235.

    54. [54]

      (52) Onoda, K.; Yoshikawa, S. Ceram. Int. 2008, 34(6), 1453

    55. [55]

      (53) Kang, S. H.; Kim, J. Y.; Kim, H. S.; Sung, Y. E. J. Ind. Eng. Chem 2008, 14(1), 52.

    56. [56]

      (54) Beranek, R.; Hildebrand, H.; Schmuki, P. Electrochem. Solid State Lett. 2003, 6(3), B12.

    57. [57]

      (55) Shankar , K.; Paulose, M.; Mor , G. K.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 38(18), 3543.

    58. [58]

      (56) Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111(20), 7235.

    59. [59]

      (57) Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A. J. Phys. Chem. C 2007, 111(41), 14992.

    60. [60]

      (58) Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G. Nanotechnology 2006, 17(12), 398.

    61. [61]

      (59) Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9(5), 947.

    62. [62]

      (60) Chen, X. B.; Schriven, M.; Suena, T. Thin Solid Films 2007, 515(24), 8511.

    63. [63]

      (61) Wang, D. A.; Liu, Y.; Wang, C. W.; Zhou, F. Prog Chem. 2010, 22(6), 1035.

    64. [64]

      [王道爱, 刘 盈, 王成伟, 周峰. 化学进展, 2010, 22(6), 1025.]

    65. [65]

      (62) Wang, J.; Lin, Z. J. Phys. Chem. C 2009, 113(10), 4026.

    66. [66]

      (63) (a) Zhao, J. L.; Wang, X. H.; Sun, T. Y.; Li, L. T. Nanotechnology 2005, 16(10), 2450

    67. [67]

      (b) Zhu, K.; Neale, N. R.; Halverson, A. F.; Kim, J. Y.; Frank, A. J. J. Phys. Chem. C 2010, 114(32), 1343

    68. [68]

      (c) Zou, J.; Zhang, Q.; Huang, K.; Marzari, N. J. Phys. Chem. C 2010, 114(24), 10725

    69. [69]

      (d) Tighineanu, A.; Ruff, T.; Albu, S.; Hahn, R.; Schmuki, P. Thin Solid Films 2010, 494, 260.

    70. [70]

      (64) Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104(15), 3481.

    71. [71]

      (65) Hoyer, P; Masuda, H. J. Chem. Mater. Lett. 1996, 15(14), 1288.

    72. [72]

      (66) Qu, J.; Gao, X. P.; Li, G. R.; Jiang, Q. W.; Yan, T. Y. J. Phys. Chem. C 2009, 113(8), 3359.

    73. [73]

      (67) Varghese, O. K.; ng, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18(1), 156.

    74. [74]

      (68) Mun, K. S.; Alvarez, S. D.; Choi, W. Y.; Sailor, M. J. Nano. 2010, 4(4), 2070.

    75. [75]

      (69) Li, J.; Yun, H.; Lin, C. J. Acta Phys. -Chim. Sin. 2007, 23(12), 1886-1892.

    76. [76]

      [李 静, 云 虹, 林昌健. 物理化学学报, 2007, 23(12), 1886.]

    77. [77]

      (70) Isimjan, T. T.; Ruby, A. E.; Rohani, S.; Ray, A. K. Nanotechnology 2010, 21(5), 55706.

    78. [78]

      (71) Lei, L. C.; Su, Y. L.; Zhou, M. H.; Zhang, X. W.; Chen, X. Q. Mater. Res. Bull. 2007, 42(12), 2230

    79. [79]

      (72) Xiao,Q.; Ouyang, L. L. J. Phys. Chem. Solids 2011, 72(1), 39.

    80. [80]

      (73) Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano Lett. 2006, 6(5), 1080.

    81. [81]

      (74) Xu, C. K.; Shaban, Y. A.; InglerJr, W. B.; Khan, S. U. M. Sol. Energy Mater. Sol. Cells 2007, 91(10), 938.

    82. [82]

      (75) Tang, X. H.; Li, D. Y. J. Phys. Chem. C 2008, 112(14), 5405

    83. [83]

      (76) Su, Y. L.; Zhang, X. W.; Han, S.; Chen, X. Q.; Lei, L. C. Electrochem. Commun. 2007, 9(9), 2291.

    84. [84]

      (77) Lu, N.; Quan, X.; Li, J. Y.; Chen, S.; Yu, H. T.; Chen, G. H. J. Phys. Chem. C 2007, 111(32), 11836.

    85. [85]

      (78) Li, J. Y.; Lu, N.; Quan, X.; Chen, S.; Zhao, H. M. Ind. Eng. Chem. Res. 2008, 47(11), 3804.

    86. [86]

      (79) Chen, S.; Paulose, M.; Ruan, C.; Mor, G. K.; Varghese, O. K.; Kouzoudis, D.; Grimes, C. A. J. Photochem. Photobio. A- Chem. 2006, 177(2-3), 177.

    87. [87]

      (80) Yin, Y. X.; Jin, Z. G.; Hou, F. Nanotechnology 2007, 18(49), 495602.

    88. [88]

      (81) Yang, L. X.; Luo, S. L.; Liu, R. H.; Cai, Q. Y.; Xiao, Y.; Lin, S. H.; Su, F.; Wen L. F. J. Phys. Chem. C 2010, 114(11), 4783.

    89. [89]

      (82) Si, H. Y.; Sun, Z. H.; Zhang, H. L. Colloids Surf. A 2008, 313-314, 604.

    90. [90]

      (83) Seabold, J. A.; Shankar, K. K.; Wilke, R. H. T.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Choi, K. S. Chem. Mater. 2008, 20(16), 5266.

    91. [91]

      (84) Benoit, A.; Paramasivam, I.; Nah, Y. C.; Roy, P.; Schmuki, P. Electrochem. Commun. 2009, 11(4), 728.

    92. [92]

      (85) Park, J. H.; Park, O. O.; Kim, S. Appl. Phys. Lett. 2006, 89(16), 163106

    93. [93]

      (86) Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. J. Am. Chem. Soc. 2008, 130(48), 16154.

    94. [94]

      (87) Hou, Y.; Li. X. Y.; Zhao, Q. D.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2010, 44(13), 5098.

    95. [95]

      (88) Mohapatra, S. K.; Banerjee, S.; Misra, M. Nanotechnology 2008, 19(31), 315601.

    96. [96]

      (89) Kontos, A. I.; Likodimos, V.; Stergiooulos, T.; Tsoukleris, D. S.; Falaras, P. Chem. Mater. 2009, 21(4), 662.

    97. [97]

      (90) Roguska, A.; Kudelski, A.; Pisarek, M.; Lewandowska, M.; Dolata, M.; Janik, C. M. J. Raman Spectrosc. 2009, 40(11), 1652.

    98. [98]

      (91) Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M. Chem. Mater. 2008, 20(21), 6784.

    99. [99]

      (92) Li, D.; Chang, P.; Chien, C.; Lu, J. G. Chem. Mater. 2010, 22(20), 5707.

    100. [100]

      (93) Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S. Phys. Chem. Chem. Phys. 2005, 24, 4157.

    101. [101]

      (94) Wang, D.; Liu, Y.; Wang, C.; Zhou, F.; Liu, W. ACS Nano. 2009, 3(5), 1249.

    102. [102]

      (95) Kim, D.; Ghicov, A.; Albu, S. P.; Schmuki, P. J. Am. Chem. Soc. 2008, 130(49), 16454.

    103. [103]

      (96) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koiden.; Han, L. Y. Jpn. J. Appl. Phys. 2006, 45(25), L638.

    104. [104]

      (97) Macák, J. M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Electrochem. Commun. 2005, 7(11), 1133.

    105. [105]

      (98) Chen, C.; Chung, H.; Chen, C.; Lu, H.; Lan, C.; Chen, S.; Luo, L.; Hung, C.; Diau, E. W. J. Phys. Chem. C 2008, 112(48), 19151.

    106. [106]

      (99) Wang, J.; Lin, Z. Chem Mater. 2010, 22(2), 579.

    107. [107]

      (100) Li, L. L.; Tsai, C. Y.; Wu, H. P.; Chen, C. C.; Diau, E. W. G. J. Mater. Chem. 2010, 20, 2753.

    108. [108]

      (101) Poulomi, R.; Doohun, K.; Kiyoung, L.; Erdmann, S.; Patrik, S. Nanoscale 2010, 2, 45.

    109. [109]

      (102) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Letters 2006, 6(2), 215.

    110. [110]

      (103) Maggie, P. E. A. J. Phys. D- Appl. Phys. 2006, 39(12), 2498.

    111. [111]

      (104) Hun, P.; Woong, R. K.; Hyo, T. J.; Jae, J. L.; Ho, G. K.; Won, Y. C. Sol. Energy Mater. Sol Cells 2009, 2(17), 1016.

    112. [112]

      (105) Oomman, K. V.; Maggie, P.; Crimes, C. A. Nature Nanotechnology 2009, 4, 592.

    113. [113]

      (106) Lei, B.; Liao, J.; Zhang, R.; Wang, J.; Su, C.; Kuang, D. J. Phys. Chem. C 2010, 114(35), 15228.

    114. [114]

      (107) Sun, W.; Yu, Y.; Pan, H.; Gao, X.; Chen, Q.; Peng, L. J. Am. Chem. Soc. 2008, 130(4), 1124

    115. [115]

      (108) Lee, W.; Kang, S. H.; Min, S. K.; Sung, Y. E.; Han, S. H. Electrochem. Commun. 2008, 10(10), 1579.

    116. [116]

      (109) Huang, S.; Zhang, Q.; Huang, X.; Guo, X; Deng, M.; Li, D.; Luo, Y; Shen, Q; Toyoda, T.; Meng, Q. Nanotechnology 2010, 21(37), 375201.

    117. [117]

      (110) Shankar, K.; Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Grimes, C. A. Langmuir 2007, 23(24), 12445.

    118. [118]

      (111) Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A. Nano Lett. 2009, 9(12), 4250.

    119. [119]

      (112) Mor, G. K.; Shankar, K.; Paulose. M.; Varghese, O. K.; Grimes, C. A. Appl. Phys. Lett. 2007, 91, 152111.


  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

Metrics
  • PDF Downloads(2561)
  • Abstract views(5065)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return