Citation:
	            
		            HUANG  Ying-Heng, TONG  Zhang-Fa, WEI  Teng-You, LI  Bin. Reaction Kinetics of the Intermediate in Synthesis of LiCoPO4 by Solid-State Reaction[J]. Acta Physico-Chimica Sinica,
							;2011, 27(06): 1325-1334.
						
							doi:
								10.3866/PKU.WHXB20110507
						
					
				
					
				
	        
- 
	                	
A precursor NH4CoPO4 containing Li+ was synthesized using a low temperature solid-state reaction with ammonium dihydrogen phosphate, cobalt acetate, and lithium hydroxide. LiCoPO4 powder was manufactured by high temperature baking. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that the formation of the intermediates was effected by the baking atmosphere. NH4CoPO4 containing Li+ was dehydrated and deaminated in air at 210?500 °C and then the (CoHPO4·LiCoPO4·Co2(OH)PO4·Li3PO4) intermediate (acid-base community) was emerged during the reaction process. The intermediate formation reaction mechanism followed the interfacial reaction power-law with an apparent activation energy of 50.0 kJ·mol-1. The kinetic function was found to be g(x)=(1-α)-1. The intermediate was dehydrated to form LiCoPO4 with an average apparent activation energy of 54.2 kJ·mol-1. The formation of the intermediate was not affected by the process of crystallization or non- crystallization of the materials. High temperatures accelerated the decomposition reaction of the intermediate and then the formation of LiCoPO4 crystals. A perfect crystal of LiCoPO4 was obtained by the decomposition of the intermediate at temperatures higher than 550 °C.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916.
 - 
			
                    [2]
                
			
[郑俊超, 李新海, 王志兴, 李金辉, 伍 凌, 李灵均, 郭华军. 物理化学学报. 2009, 25, 1916.]
 - 
			
                    [3]
                
			
(2) Wolfenstine, J.; Allen, J. J. Power Sources 2004, 136, 150.
 - 
			
                    [4]
                
			
(3) Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144.
 - 
			
                    [5]
                
			
(4) Rissouli, K.; Benkhouja, K.; Ramos-Barrado, J. R.; Julien, C. Mater. Sci. Eng. B 2003, 98, 185.
 - 
			
                    [6]
                
			
(5) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. I. J. Power Sources 2005, 146, 565.
 - 
			
                    [7]
                
			
(6) ni, A.; Lezama, L.; Barberis, G. E.; Pizarro, J. L.; Arriortua, M. I.; Rojo, T. J. Magn. Magn. Mater. 1996, 164, 251.
 - 
			
                    [8]
                
			
(7) Brown, P. J.; Frsyth, J. B.; Tasset, F. Solid-State Sci. 2005, 7, 682.
 - 
			
                    [9]
                
			
(8) Santoro, R. P.; Segal, D. J.; Newnham, R. E. J. Phys. Chem. Solids 1966, 27, 119.
 - 
			
                    [10]
                
			
(9) Van Aken, B. B.; Rivera, J. P.; Schmid, H.; Fiebig, M. F. Nature 2007, 449, 702.
 - 
			
                    [11]
                
			
(10) Ehrenberg, H.; Bramnik, N. N.; Senyshyn, A.; Fuess, H. Solid State Sci. 2009, 11, 18.
 - 
			
                    [12]
                
			
(11) Bramnik, N. N.; Bramnik, K. G.; Baehtz, C.; Ehrenberg, H. J. Power Sources 2005, 145, 74.
 - 
			
                    [13]
                
			
(12) Wolfenstine, J.; Poese, B.; Allen, J. L. J. Power Sources 2004, 138, 281.
 - 
			
                    [14]
                
			
(13) Wolfenstine, J.; Read, J.; Allen, J. L. J. Power Sources 2007, 163, 1070.
 - 
			
                    [15]
                
			
(14) Wolfenstine, J.; Lee, U.; Poese, B.; Allen, J. L. J. Power Sources 2005, 144, 226.
 - 
			
                    [16]
                
			
(15) Gri rova, V.; Roussev, D.; Deniard, P.; Jobic, S. J. Phys. Chem. Solids 2005, 66, 1598.
 - 
			
                    [17]
                
			
(16) Deniard, P.; Dulac, A. M.; Roequefdte, X; Gri rova, V.; Lebacq, O.; Pasturel, A.; Jobic. S. J. Phys. Chem. Solids 2004, 65, 229.
 - 
			
                    [18]
                
			
(17) Han, D. W.; Kang, Y. M.; Yin, R. Z.; Song, M. S.; Kwon, H. S. Electrochem. Commun. 2009, 11, 137.
 - 
			
                    [19]
                
			
(18) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. J. Yunnan University (Natural Science) 2010, 32, 314.
 - 
			
                    [20]
                
			
[黄映恒, 童张法, 蓝建京, 陈义族. 云南大学学报: 自然科学版, 2010, 32, 314.]
 - 
			
                    [21]
                
			
(19) Huang, Y. H; Tong, Z. F; Lan, J. J.; Chen, Y. Z. The Chinese Journal of Process Engineering 2010, 10, 179.
 - 
			
                    [22]
                
			
[黄映恒, 童张法, 蓝建京, 陈义族. 过程工程学报, 2010, 10, 179.]
 - 
			
                    [23]
                
			
(20) Huang, Y. H; Tong, Z. F; Liao, S; Lan, J. J.; Chen, Y. Z. Journal of Chemical Engineering of Chinese Universities 2010, 24, 967.
 - 
			
                    [24]
                
			
[黄映恒, 童张法, 廖 森, 蓝建京, 陈义族. 高校化学工程学报, 2010, 24, 967.]
 - 
			
                    [25]
                
			
(21) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 62, 1196.
 - 
			
                    [26]
                
			
(22) Koleva, G. V. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 413.
 - 
			
                    [27]
                
			
(23) Ruan, Y. L.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 873.
 - 
			
                    [28]
                
			
[阮艳莉, 唐致远. 物理化学学报, 2008, 24, 873.]
 - 
			
                    [29]
                
			
(24) Conesa, J. A.; Marcilla, A.; Caballero, J. A.; Font, R. J. Anal. Appl. Pyrolysis 2001, 58-59, 617.
 - 
			
                    [30]
                
			
(25) Ozawa, T. J. Therm. Anal. 1970, 2, 301.
 - 
			
                    [31]
                
			
(26) Kissinger, H. E. J. Anal. Chem. 1957, 29, 1702.
 - 
			
                    [32]
                
			
(27) Sestak, J.; Berggren, G. Thermochim. Acta 1971, 3, 1
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
 - 
				[2]
				
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
 - 
				[3]
				
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
 - 
				[4]
				
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
 - 
				[5]
				
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
 - 
				[6]
				
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
 - 
				[7]
				
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
 - 
				[8]
				
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
 - 
				[9]
				
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
 - 
				[10]
				
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
 - 
				[11]
				
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
 - 
				[12]
				
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
 - 
				[13]
				
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
 - 
				[14]
				
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
 - 
				[15]
				
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
 - 
				[16]
				
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
 - 
				[17]
				
Linlin Wu , Yonghua Zhou , Zhongbei Li , Liu Deng , Younian Liu , Limiao Chen , Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018
 - 
				[18]
				
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
 - 
				[19]
				
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
 - 
				[20]
				
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1097)
 - Abstract views(2971)
 - HTML views(20)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: