Citation: ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1095-1102. doi: 10.3866/PKU.WHXB20110440
-
The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small “core” zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.
-
-
[1]
(1) Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.
-
[2]
(2) Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.
-
[3]
(3) Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.
-
[4]
(4) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.
-
[5]
(5) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.
-
[6]
(6) Gates, B. C. Chem. Rev. 1995, 95, 511.
-
[7]
(7) (a) Clair, T. P. St.; odman, D. W. Top. Catal. 2000, 13, 5.
-
[8]
(b) Wallace, W. T.; Min, B. K.; odman, D. W. ibid. 2005, 34, 17.
-
[9]
(8) Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P. J. Magn. Magn. Mater. 2009, 321, 2354
-
[10]
(9) Zirconia Engineering Ceramics. In Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications, 1998; pp 153-154.
-
[11]
(10) Brune, H. Surf. Sci. Rep. 1998, 31, 121.
-
[12]
(11) Liu, S. D.; Bonig, L.; Metiu, H. Phys. Rev. B 1995, 52, 2907.
-
[13]
(12) Castleman , A. W., Jr.; Jena, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10552.
-
[14]
(13) Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2664.
-
[15]
(14) Martin, T. P.; Bergmann, T. J. Chem. Phys. 1989, 90, 6664.
-
[16]
(15) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Bordas, C.; Paulig, F.; Viallon, J.; Chevaleyre, J. Phys. Rev. Lett. 1998, 80, 2817.
-
[17]
(16) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Paulig, F.; Viallon, J.; Bordas, C.; Chevaleyre, J. J. Chem. Phys. 2000, 112, 6228.
-
[18]
(17) Ziemann, P. J.; Castleman, A. W., Jr. Phys. Rev. B 1991, 44, 6488.
-
[19]
(18) Ziemann, P. J.; Castleman, A. W., Jr. J. Chem. Phys. 1991, 94, 718.
-
[20]
(19) Saunders, W. A. Phys. Rev. B 1988, 37, 6583.
-
[21]
(20) Wilson, M. J. Phys. Chem. B 1997, 101, 4917.
-
[22]
(21) Liu, H. T.; Wang, S. Y.; Zhou, G.; Wu, J.; Duan, W. H. J. Chem. Phys. 2007, 126, 134705.
-
[23]
(22) Ding, X. L.; Xue, W.; Ma, Y. P.; Wang, Z. C.; He, S. G. J. Chem. Phys. 2009, 130, 014303.
-
[24]
(23) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.
-
[25]
(24) Kaufman, M.; Muenter, J.; Klemperer, W. J. Chem. Phys. 1967, 47, 3365.
-
[26]
(25) Linevsky, M. J. Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry Chemical Propulsion Information Agency, New York, 1963.
-
[27]
(26) Brugh, D. J.; Suenram, R. D. J. Chem. Phys. 1999, 111, 3526.
-
[28]
(27) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 2001, 114, 8971.
-
[29]
(28) Chen, S. G.; Yu, M. Y.; Hu, B. G.; Wang, X.; Liu, Y. C.; Yu, S. Q.; Zhang, W. W.; Yin, Y. S. J. Chin. Ceram. Soc. 2007, 35, 46.
-
[30]
(29) Takashi, A.; Wataru, H.; Shige, O. J. Chem. Phys. 2002, 117, 24.
-
[31]
(30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
-
[32]
(31) Delley, B. J. Chem. Phys. 1990, 92, 508; 2000, 113, 7756; DMol3 is available as part of Material Studio.
-
[33]
(32) Wang, C. C.; Zhao, R. N.; Hang, J. G. J. Chem. Phys. 2006, 124, 194301.
-
[34]
(33) Huber, K. P.; Herzberg, G. Constant of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
-
[35]
(34) Weltner, W., Jr.; Mcleod, D., Jr. J. Phys. Chem. 1965, 69, 488.
-
[36]
(35) Mcintyre, N. S.; Thompson, K. R.; Weltner, W., Jr. J. Phys. Chem. 1971, 75, 3243.
-
[37]
(36) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.
-
[38]
(37) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; rdon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936.
-
[39]
(38) Chu, T. S.; Zhang, R. Q.; Cheng, J. F. J. Phys. Chem. B 2001, 105, 1705.
-
[40]
(39) Jones, N. O.; Reddy, B. V.; Rasouli, F. Phys. Rev. B 2005, 72, 165411.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[7]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[8]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[9]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[10]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[11]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[12]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[13]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[14]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[15]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[16]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[17]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[18]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[19]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[20]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[1]
Metrics
- PDF Downloads(1290)
- Abstract views(2780)
- HTML views(60)