Citation: ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1095-1102. doi: 10.3866/PKU.WHXB20110440 shu

Structures and Stabilities of Small Zirconium Oxide Clusters

  • Received Date: 21 December 2010
    Available Online: 18 March 2011

    Fund Project: 国家自然科学基金(10804027, 11011140321)资助项目 (10804027, 11011140321)

  • The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small “core” zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.

  • 加载中
    1. [1]

      (1) Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.

    2. [2]

      (2) Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.

    3. [3]

      (3) Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.

    4. [4]

      (4) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.

    5. [5]

      (5) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.

    6. [6]

      (6) Gates, B. C. Chem. Rev. 1995, 95, 511.

    7. [7]

      (7) (a) Clair, T. P. St.; odman, D. W. Top. Catal. 2000, 13, 5.

    8. [8]

      (b) Wallace, W. T.; Min, B. K.; odman, D. W. ibid. 2005, 34, 17.

    9. [9]

      (8) Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P. J. Magn. Magn. Mater. 2009, 321, 2354

    10. [10]

      (9) Zirconia Engineering Ceramics. In Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications, 1998; pp 153-154.

    11. [11]

      (10) Brune, H. Surf. Sci. Rep. 1998, 31, 121.

    12. [12]

      (11) Liu, S. D.; Bonig, L.; Metiu, H. Phys. Rev. B 1995, 52, 2907.

    13. [13]

      (12) Castleman , A. W., Jr.; Jena, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10552.

    14. [14]

      (13) Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2664.

    15. [15]

      (14) Martin, T. P.; Bergmann, T. J. Chem. Phys. 1989, 90, 6664.

    16. [16]

      (15) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Bordas, C.; Paulig, F.; Viallon, J.; Chevaleyre, J. Phys. Rev. Lett. 1998, 80, 2817.

    17. [17]

      (16) Boutou, V.; Lebeault, M. A.; Allouche, A. R.; Paulig, F.; Viallon, J.; Bordas, C.; Chevaleyre, J. J. Chem. Phys. 2000, 112, 6228.

    18. [18]

      (17) Ziemann, P. J.; Castleman, A. W., Jr. Phys. Rev. B 1991, 44, 6488.

    19. [19]

      (18) Ziemann, P. J.; Castleman, A. W., Jr. J. Chem. Phys. 1991, 94, 718.

    20. [20]

      (19) Saunders, W. A. Phys. Rev. B 1988, 37, 6583.

    21. [21]

      (20) Wilson, M. J. Phys. Chem. B 1997, 101, 4917.

    22. [22]

      (21) Liu, H. T.; Wang, S. Y.; Zhou, G.; Wu, J.; Duan, W. H. J. Chem. Phys. 2007, 126, 134705.

    23. [23]

      (22) Ding, X. L.; Xue, W.; Ma, Y. P.; Wang, Z. C.; He, S. G. J. Chem. Phys. 2009, 130, 014303.

    24. [24]

      (23) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.

    25. [25]

      (24) Kaufman, M.; Muenter, J.; Klemperer, W. J. Chem. Phys. 1967, 47, 3365.

    26. [26]

      (25) Linevsky, M. J. Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry Chemical Propulsion Information Agency, New York, 1963.

    27. [27]

      (26) Brugh, D. J.; Suenram, R. D. J. Chem. Phys. 1999, 111, 3526.

    28. [28]

      (27) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 2001, 114, 8971.

    29. [29]

      (28) Chen, S. G.; Yu, M. Y.; Hu, B. G.; Wang, X.; Liu, Y. C.; Yu, S. Q.; Zhang, W. W.; Yin, Y. S. J. Chin. Ceram. Soc. 2007, 35, 46.

    30. [30]

      (29) Takashi, A.; Wataru, H.; Shige, O. J. Chem. Phys. 2002, 117, 24.

    31. [31]

      (30) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.

    32. [32]

      (31) Delley, B. J. Chem. Phys. 1990, 92, 508; 2000, 113, 7756; DMol3 is available as part of Material Studio.

    33. [33]

      (32) Wang, C. C.; Zhao, R. N.; Hang, J. G. J. Chem. Phys. 2006, 124, 194301.

    34. [34]

      (33) Huber, K. P.; Herzberg, G. Constant of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.

    35. [35]

      (34) Weltner, W., Jr.; Mcleod, D., Jr. J. Phys. Chem. 1965, 69, 488.

    36. [36]

      (35) Mcintyre, N. S.; Thompson, K. R.; Weltner, W., Jr. J. Phys. Chem. 1971, 75, 3243.

    37. [37]

      (36) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.

    38. [38]

      (37) Lu, W. C.; Wang, C. Z.; Nguyen, V.; Schmidt, M. W.; rdon, M. S.; Ho, K. M. J. Phys. Chem. A 2003, 107, 6936.

    39. [39]

      (38) Chu, T. S.; Zhang, R. Q.; Cheng, J. F. J. Phys. Chem. B 2001, 105, 1705.

    40. [40]

      (39) Jones, N. O.; Reddy, B. V.; Rasouli, F. Phys. Rev. B 2005, 72, 165411.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    12. [12]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    13. [13]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(1290)
  • Abstract views(2780)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return