Citation: GUO Xiao-Wei, TENG Bo-Tao, YUAN Jin-Huan, ZHAO Yun, ZHAO Yue, LIU Sha. Density Functional Theory Study of Atomic and Molecular Oxygen Adsorption on Au Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1068-1074. doi: 10.3866/PKU.WHXB20110438 shu

Density Functional Theory Study of Atomic and Molecular Oxygen Adsorption on Au Clusters

  • Received Date: 4 November 2010
    Available Online: 18 March 2011

    Fund Project: 国家自然科学基金(20903081) (20903081)浙江省自然科学基金(Y407163)资助项目 (Y407163)

  • The adsorption behaviors of O and O2 on charged and neutral Au19 and Au20 clusters were systematically investigated by density functional theory (DFT) with Dmol3 program. Our results indicate that the adsorption energies of O on the hollow sites of Au19 are higher than those on Au20; while those on the side-bridge sites of the Au19 and Au20 clusters are similar. For negatively charged clusters, the adsorption energies of O and O2 are higher than those for neutral and positive clusters. The O―O bond lengths of the adsorbed O2 on the Au19 and Au20 clusters with different charges show a similar trend to the adsorption energy, that is, the O―O bond lengths on Au19- are longer than those on the Au19 and Au19+ clusters. Population analysis shows that more electrons transfer to the adsorbed O and O2 from the Au19- and Au-20 clusters, which indicates stronger interactions compared with the neutral or positive clusters. Charge density difference (CDD) analysis for O2 on the Au19 and Au20 clusters suggests that electrons of the Au19 and Au20 clusters transfer to the π* orbital of O2, upon which the O―O bonds are activated. The dissociation reaction barrier of O2 on Au19- is 1.33 eV, which is lower than those on Au19 (1.86 eV) and Au19+ (2.27 eV).

  • 加载中
    1. [1]

      (1) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301.

    2. [2]

      (2) Haruta, M. Catal. Today 1997, 36, 153.

    3. [3]

      (3) Debeila, M. A.; Coville, N. J.; Scurrell, M. S.; Hearne, G. R. Catal. Today 2002, 72, 11.

    4. [4]

      (4) Valden, M.; Lai, X.; odman, D. W. Science 1998, 281, 1647.

    5. [5]

      (5) Kozlov, A. I.; Kozlova, A. P.; Asakura, K.; Matsui, Y.; Kogure, T.; Shido, T.; Iwasawa, Y. J. Catal. 2000, 196, 56.

    6. [6]

      (6) Qian, K.; lv, S. S.; Xiao, X. Y.; Sun, H. X.; Lu, J. Q.; Luo, M. F.; Huang, W. X. J. Mol. Catal. A 2009, 306, 40.

    7. [7]

      (7) Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. J. Mol. Catal. A 2010, 320, 97.

    8. [8]

      (8) Okumura, M.; Kitagawa, Y.; Haruta, M.; Yamaguchi, K. Appl. Catal. A 2005, 291, 37.

    9. [9]

      (9) Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J. J. Am. Chem. Soc. 2010, 132, 2175.

    10. [10]

      (10) Okazawa, T.; Fujiwara, M.; Nishimura, T.; Akita, T.; Kohyama, M.; Kido, Y. Surf. Sci. 2006, 600, 1331.

    11. [11]

      (11) Cheng, D. J.; Lan, J. H.; Wang, W. C.; Cao D. P. Surf. Sci. 2009, 603, 881.

    12. [12]

      (12) Saliba, N.; Parker, D. H.; Koel, B. E. Surf. Sci. 1998, 410, 270.

    13. [13]

      (13) Min, B. K.; Wallace, D. W.; odman, D. W. Surf. Sci. 2006, 600, 7.

    14. [14]

      (14) Cox, D. M.; Brockman, R.; Creegan, K.; Kaldor, A.; Z. Phys. D 1991, 19, 353.

    15. [15]

      (15) Huang, W.; Zhai, H. J.; Wang, L. S. J. Am. Chem. Soc. 2010, 132, 4344.

    16. [16]

      (16) Mao, H. P.; Wang, H. Y.; Ni, Y.; Xu, G. L.; Ma, M. Z.; Zhu, Z. H.; Tang, Y. J. Acta. Phys. Sin. 2004, 53, 1766.

    17. [17]

      [毛华平, 王红艳, 倪 羽, 徐国亮, 马美仲, 朱正和, 唐永建. 物理学报, 2004, 53, 1766.]

    18. [18]

      (17) Zeng, Z. H.; Deng, H. Q.; Li, W. X.; Hu, W. Y. Acta Phys. Sin. 2006, 55, 3157.

    19. [19]

      [曾振华, 邓辉球, 李微雪, 胡望宇. 物理学报, 2006, 55, 3157.]

    20. [20]

      (18) Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. J. Catal. 2004, 223, 232.

    21. [21]

      (19) Franceschetti, A.; Pennycook, S. J.; Pantelides, S. T.; Chem. Phys. Lett. 2003, 374, 471.

    22. [22]

      (20) Mills. G.; rdon, M. S.; Metiu, H. Chem. Phys. Lett. 2002, 359, 493.

    23. [23]

      (21) Fernández, E. M.; Ordejón, P.; Balbós, L. C. Chem. Phys. Lett. 2005, 408, 252.

    24. [24]

      (22) Wang, S.; Wang, W. N.; Lu, J.; Chen, G. H.; Fan, K. N. Acta Chim. Sin. 2007, 65, 2085.

    25. [25]

      [王 顺, 王文宁, 陆 靖, 陈冠华, 范康年. 化学学报, 2007, 65, 2085.]

    26. [26]

      (23) Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Science 2003, 299, 864.

    27. [27]

      (24) Zhao, L. X.; Lei, Y. M.; Zhang, M.; Feng, X. J.; Luo,Y. H. Physica B 2009, 404, 1705

    28. [28]

      (25) Fa, W.; Luo, C. F.; Dong, J. M. Phys. Rev. B 2005, 72, 205428.

    29. [29]

      (26) Delley, B. J. Chem. Phys. 2000, 113, 7756.

    30. [30]

      (27) Delley, B. J. Chem. Phys. 1990, 92, 508.

    31. [31]

      (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    32. [32]

      (29) Xu, Y. L.; Yan, X. L.; Jia, Y. M.; Luo, J. H.; Cao, Q. X.; et al. Introduction to Material Physics; University of Electronic Science and Technology of China: Chengdu, 1994; pp 20-62.

    33. [33]

      [徐毓龙, 闫西林, 贾宇明, 罗佳慧, 曹全喜. 材料物理导论. 成都: 电子科技大学, 1994: 20-62.]


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1962)
  • Abstract views(4838)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return