Citation: JIAO Yi, LI Jun, WANG Jing-Bo, WANG Jian-Li, ZHU Quan, CHEN Yao-Qiang, LI Xiang-Yuan. Experiment and Kinetics Simulation on the Pyrolysis of n-Decane[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1061-1067. doi: 10.3866/PKU.WHXB20110437 shu

Experiment and Kinetics Simulation on the Pyrolysis of n-Decane

  • Received Date: 28 December 2010
    Available Online: 17 March 2011

    Fund Project: 国家自然科学基金(91016002) (91016002)国家高技术研究发展计划(863)项目(2006AA01A119)资助 (863)项目(2006AA01A119)

  • In this work, atmospheric cracking equipment was used to study the distribution of the main gas products of n-decane pyrolysis including hydrogen, methane, and ethylene between 973-1123 K and at different residence time of 0.5-2 s. The detailed mechanism for n-decane pyrolysis, which was composed of 1072 steps and 281 species, was automatically generated by the ReaxGen program that was developed in our laboratory. We thus carried out kinetic modeling and the results were compared with experimental observations. Using sensitivity analysis we identified the main reaction steps, the alkyl rearrangement and the β-cleavage reactions, which mostly influence the distributions of hydrogen, methane, and ethylene at atmospheric pressure and 973 K with a residence time of 1 s.

  • 加载中
    1. [1]

      (1) Herbinet, O.; Paul-Marie, M.; Battin-Leclerc, F.; Fournet, R. J. Anal. Appl. Pyrolysis 2007, 78, 419.

    2. [2]

      (2) Sobel, D. R.; Spadaccini, L. J. J. Engin. Gas. Turb. Power 1997, 119, 345.

    3. [3]

      (3) Xie, W. J.; Fang, W. J.; Li, D.; Xing, Y.; Guo,Y. S.; Lin, R. S. Acta Chim. Sin. 2009, 67, 1759.

    4. [4]

      [谢文杰, 方文军, 李 丹, 邢 燕, 郭永胜, 林瑞森. 化学学报, 2009, 67, 1759.]

    5. [5]

      (4) Yin, K. L.; Wu, G. Y.; Chen, Z. L. Acta Petr. Sin. 2006, 17, 77.

    6. [6]

      [殷开梁, 邬国英, 陈正隆. 石油学报, 2006, 17, 77.]

    7. [7]

      (5) Wang, Z. W.; Zheng, X. W.; Mi, Z. T.; Hao, W. H. Petrochem. Technol. 2005, 34, 518.

    8. [8]

      [王占卫, 张香文, 米镇涛, 郝伟华. 石油化工, 2005, 34, 518]

    9. [9]

      (6) Billaud, F.; Chaverot, P.; Freund, E. J. Anal. Appl. Pyrolysis 1987, 11, 39.

    10. [10]

      (7) Glaude, P. A.; Warth, V.; Fournet, R.; Battin-Leclerc, F.; Scacchi, G.; Come, G. M. Int. J. Chem. Kinet. 1998, 30, 949.

    11. [11]

      (8) Warnatz, J.; Nehse, M. Twenty-Sixth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1996; p 773.

    12. [12]

      (9) Bales-Gueret, C.; Cathonnet, M.; Boettner, J. C.; Gaillard, F. Energy & Fuels, 1992, 6, 189.

    13. [13]

      (10) Battin-Leclerc, F.; Fournet, R.; Glaude, P. A.; Judenherc, B.; Warth, V.; Come, G. M.; Scacchi, G. Twenty-Eight Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 2000; p 1597.

    14. [14]

      (11) Delfau, J. L.; Bouhria, M.; Reuillon, M.; Sano , O.; Akrich, R.; Vovelle, C. Twenty-Third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1991; p 1567.

    15. [15]

      (12) Bikas, G.; Peters, N. Combust. Flame 2001, 126, 1456.

    16. [16]

      (13) Bradley, D.; El-Din Habik, S.; El-Sharif, S. A. Combust. Flame 1991, 87, 336.

    17. [17]

      (14) Zeppieri, S. P.; Klotz, S. D.; Dryer, F. L.Twenty-Eighth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 2000; p 1587.

    18. [18]

      (15) Yoneda, Y. Bull. Chem. Soc. Jpn. 1979, 52, 8.

    19. [19]

      (16) Ranzi, E.; Pierucci, S. Comput. Chem. Eng. 2008, 32, 805.

    20. [20]

      (17) Ranzi, E.; Faravelli, T.; Gaffuri, P.; Pennati, G.; Sogaro, A. Combust. Sci. Technol., 1994, 100, 299.

    21. [21]

      (18) http://www.Valerie.Conraud@ensic.inpl-nancy.fr/.

    22. [22]

      (19) Muharam,Y. Detailed Kinetic Modelling of the Oxidation and Combustion of Large Hydrocarbons Using an Automatic Generation of Mechanisms. Ph. D. Dissertation, University of Heidelberg, Germany, 2005.

    23. [23]

      (20) Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. Acta Chim. Sin. 2010, 68, 239.

    24. [24]

      [李 军, 邵菊香, 刘存喜, 饶含兵, 李泽荣, 李象远. 化学学报, 2010, 68, 239.]

    25. [25]

      (21) Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31.

    26. [26]

      (22) Weininger, D.; Weininger, A.; Weininger, J. J. Chem. Inf. Comput. Sci. 1989, 29, 97.

    27. [27]

      (23) Benson, S.W. Thermochemical Kinetics, 2nd ed.; John Wiley: New York, 1976.

    28. [28]

      (24) Kee, R. J.; Rupley, F. M.; Miller, J. A. Sandia National Laboratories Report No. SAND89-8009B. Sandia National Laboratories, Albuquerque, NM, 1989.

    29. [29]

      (25) Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry; Higher Education Press: Beijing, 2006; pp 191-197.

    30. [30]

      [傅献彩, 沈文霞, 姚天扬, 侯文华. 物理化学. 北京: 高等教育出社, 2006: 191-197.]


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(1304)
  • Abstract views(2839)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return