Citation: TIAN Li, ZHOU ng-Bing, LI Zhen-Hua, PEI Yan, QIAO Ming-Hua, FAN Kang-Nian.  ld Supported on Aminosilane-Functionalized SBA-15 for Chemoselective Hydrogenation of Crotonaldehyde[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 946-952. doi: 10.3866/PKU.WHXB20110434 shu

ld Supported on Aminosilane-Functionalized SBA-15 for Chemoselective Hydrogenation of Crotonaldehyde

  • Received Date: 17 December 2010
    Available Online: 17 March 2011

    Fund Project: 国家自然科学基金(21073043, 20803011) (21073043, 20803011) 教育部新世纪优秀人才支持计划(NCET-08-0126) (NCET-08-0126) 上海市科委科技基金(10JC1401800, 08DZ2270500) (10JC1401800, 08DZ2270500)石油化工催化材料与反应工程国家重点实验室(RIPP, SINOPEC)开放基金课题资助项目 (RIPP, SINOPEC)

  • Three kinds of aminosilane (APTS: 3-aminopropyltrimethoxysilane, TPED: N-[3-(trimethoxysilyl)-propylethylene]diamine, TPDT: trimethoxysilyl propyl diethylenetriamine) functionalized mesoporous SBA- 15 molecular sieves (denoted APTS-SBA-15, TPED-SBA-15 and TPDT-SBA-15) were synthesized by post-grafting. Using the static interaction between the amino group and chloroauric acid followed by chemical reduction, the ld nanoparticles were immobilized into the channels of SBA-15. The Au/aminosilane-SBA-15 catalysts were systematically characterized by N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The liquid phase hydrogenation of crotonaldehyde to crotyl alcohol (CROL) was used to investigate the effect of aminosilanes on the catalytic performance of the Au/amine-SBA-15 catalysts. The results revealed that the electron-donating ability of the aminosilane determines the selectivity towards the hydrogenation of the C=O bond on the ld catalyst. A stronger aminosilane electron-donating ability results in higher electron density on the ld active sites, which leads to the higher selectivity and yield of CROL.

  • 加载中
    1. [1]

      (1) Atik, M.; Delima Neto, M. J. Appl. Electrochem. 1995, 25, 142.

    2. [2]

      (2) Deki, S.; Aoi, Y. J. Mater. Res. 1998, 13, 883.

    3. [3]

      (3) Huang, X. Q.; Li, N. J. Alloy. Compd. 2008, 465 (1-2), 317.

    4. [4]

      (4) Shen, G. X.; Chen,Y. C.; Lin, L.; Lin, C. J.; Scantlebury, D. Electrochim. Acta 2005, 50, 5083.

    5. [5]

      (5) Szalkowska, E.; Gluszek, J.; Masalski, J.; Tylus, W. J. Mater. Sci. Lett. 2001, 20(6), 495.

    6. [6]

      (6) Yun, H.; Li, J.; Chen, H. B.; Lin, C. J. Electrochim. Acta 2007, 52, 6679.

    7. [7]

      (7) Yu, H. G.; Yu, J. G.; Cheng, B.; Zhou, M. H. J. Solid State Chem. 2006, 179, 349.

    8. [8]

      (8) Kim, D. S.; Kwak, S. Y. Appl. Cata. A: General 2007, 323, 110.

    9. [9]

      (9) Dai, S. X.; Wu, Y. Q.; Sakai, T.; Du, Z. L.; Sakai, H.; Abe, M. Nanoscale Res. Lett. 2010, 5(11), 1829.

    10. [10]

      (10) Shao, S. F.; Dimitrov, M.; Guan, N. J.; Kohn, R. Nanoscale 2010, 2 (10), 2054.

    11. [11]

      (11) Yuan, J. J.; Li, H. D.; Gao, S. Y.; Sang, D. D.; Li, L. A.; Lu, D. Mater. Lett. 2010, 64(18), 2012.

    12. [12]

      (12) Arita, T.; Moriya, K.; Minami, K.; Naka, T.; Adschiri, T. Chem. Lett. 2010, 39(9), 961.

    13. [13]

      (13) Wang, X. N.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Chem. Eur. J. 2010, 16(24), 7106.

    14. [14]

      (14) Xu, Y. M.; Fang, X. M.; Xiong, J. A.; Zhang, Z. G. Mater. Res. Bull. 2010, 45(7), 799.

    15. [15]

      (15) Li, J.; Yu, H. P.; Sun, Q. F.; Liu, Y. X.; Cui, Y. Z.; Lu, Y. Appl. Surf. Sci. 2010, 256(16), 5046.

    16. [16]

      (16) Liu, S. J.; ng, J. Y.; Hu, B.; Yu, S. H. Cryst. Growth Des. 2009, 9(1), 203.

    17. [17]

      (17) Yamamoto, K.; Tomita, K.; Fujita, K.; Kobayashi, M.; Petrykin, V.; Kakihana, M. J. Cryst. Growth 2009, 311(3), 619.

    18. [18]

      (18) Yasui, K.; Isobe, T.; Nakajima, A. Mater. Lett. 2010, 64(19), 2036.

    19. [19]

      (19) Shen, X.; Wang, Y. X.; Lu, L. Q.; Chen, Y. L.; Xia, Y.; Li, Y. H. J. Sol-Gel Sci. Technol. 2010, 54(3), 340.

    20. [20]

      (20) Shen, L. M.; Bao, N. Z.; Zheng, Y. Q.; Gupta, A.; An, T. C.; Yanagisawa, K. J. Phys. Chem. C 2008, 112(24), 8809.

    21. [21]

      (21) Zhang, X.; Zhao, Y.; Zhang, C. B.; Meng, H. Acta Phys. -Chim. Sin. 2007, 23(6), 856. [张 霞, 赵 岩, 张彩碚, 孟 皓. 物理化学学报, 2007, 23(6), 856.]

    22. [22]

      (22) Zhao, H. J.; Shen, Y. M.; Zhang, S. Q.; Zhang, H. M. Langmuir 2009, 25(18), 11032.

    23. [23]

      (23) Atsunori, M.; Tatsuo, M.; Toshihiro, K.; Kiyoharu, T.; Tsutomu, M.; Masahiro, T. Chem. Mater. 2005, 17, 749.

    24. [24]

      (24) Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. J. Am. Chem. Soc. 2004, 126, 7790.

    25. [25]

      (25) Pavasupree, S.; Jitputti, J.; Ngamsinlapasathian, S.; Yoshikawa, S. Mater. Res. Bull. 2008, 43(1), 149.

    26. [26]

      (26) Tomita, K.; Kobayashi, M.; Petrykin, V.; Yin, S.; Sato, T.; Yoshimura, M.; Kakihana, M. J. Mater. Sci. 2008, 43(7), 2217.

    27. [27]

      (27) Yu, J. G.; Wang, G. H.; Cheng, B.; Zhou, M. H. Appl. Catal. B-Environ. 2007, 69, 171.

    28. [28]

      (28) Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O. Chem. Eur. J. 2007, 13, 1851.

    29. [29]

      (29) Hsiao, P. T.; Lu, M. D.; Tung, Y. L.; Teng, H. S. J. Phys. Chem. C 2010, 114(37), 15625.

    30. [30]

      (30) Jung, H. G.; Kang, Y. S.; Sun, Y. K. Electrochim. Acta 2010, 55(15), 4637.

    31. [31]

      (31) An′amt, M. N.; Radiman, S.; Huang, N. M.; Yarmo, M. A.; Ariyanto, N. P.; Lim, H. N.; Muhamad, M. R. Ceram. Int. 2010, 36(7), 2215.

    32. [32]

      (32) Shim, H. W.; Lee, D. K.; Cho, I. S.; Hong, K. S.; Kim, D. W. Nanotechnology 2010, 21(25), 255706.

    33. [33]

      (33) Chiu, K.Y.; Wong, M. H.; Cheng, F. T.; Man, H. C. Appl. Surf. Sci. 2007, 253, 6762.

    34. [34]

      (34) Zhao, X.; Liu, M. H.; Zhu, Y. F. Thin Solid Films, 2007, 515, 7127.

    35. [35]

      (35) Wu, Y.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2007, 23(5), 625. [伍 彦, 姚文清, 朱永法. 物理化学学报, 2007, 23(5), 625.]

    36. [36]

      (36) Zhu, Y. F.; Zhang, L.; Wang, L.; Fu, Y.; Cao, L. L. Acta Chim. Sin. 2000, 58(4), 467. [朱永法, 张 利, 王 莉, 付 艳, 曹立礼. 化学学报, 2000, 58(4), 467.]


  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    3. [3]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    18. [18]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(1171)
  • Abstract views(2617)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return