Citation: FAN Xin-Zhuang, LU Yong-Hong, KONG Xiang-Feng, XU Hai-Bo, WANG Jia. Pseudo-Capacitive and Electrocatalytic Properties of Electrochemically Modified Graphite Electrode in Different Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 887-892. doi: 10.3866/PKU.WHXB20110426 shu

Pseudo-Capacitive and Electrocatalytic Properties of Electrochemically Modified Graphite Electrode in Different Solutions

  • Received Date: 19 November 2010
    Available Online: 11 March 2011

    Fund Project: 山东省博士基金(BS2010NJ018) (BS2010NJ018)中国海洋大学专项基金(201022006)资助项目 (201022006)

  • A graphite electrode (GE) was electrochemically modified by recurrent galvanic pulses. The pseudo-capacitive behavior in acidic and neutral solutions and the electrocatalytic property in HCl and HNO3 solutions of the modified graphite electrode (MGE) were evaluated by cyclic voltammetry (CV). We found that the MGE exhibited a considerable pseudo-capacitance (the specific capacitance was high up to 1.730 F·cm-2) in H2SO4 solution and excellent pseudo-capacitive behavior was obtained in HCl solution as well except for a narrow potential window. This was due to the excellent electrocatalytic activity of the MGE toward the chlorine evolution reaction (the onset potential of chlorine evolution was negatively shifted 238 mV). However, the MGE showed no pseudo-capacitive behavior in HNO3 solution but did show electrocatalytic activity toward the reduction of nitric acid. Compared with the pseudo-capacitive behavior in acidic solutions, the potential window of the MGE in neutral solution was substantially broadened and its energy density improved greatly eventually even though the corresponding peak current density decreased.

  • 加载中
    1. [1]

      (1) Richard, C. A.; Richard, D. B. AICHE J. 2004, 50, 2000.

    2. [2]

      (2) Wu, H. H. Electrochemical engineering fundamentals; Beijing: Chemical Industry Press, 2008; pp 1-15.

    3. [3]

      [吴辉煌. 电化学工程基础. 北京: 化学工业出版社, 2008; pp 1-15.]

    4. [4]

      (3) Tang, D. Mater. Sci. Eng. 1989, 7, 42.

    5. [5]

      [唐 电. 材料科学与工程, 1989, 7, 42.]

    6. [6]

      (4) Frackowiak, E.; Béguin, F. Carbon 2001, 39, 937.

    7. [7]

      (5) Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Carbon 2005, 43, 1293.

    8. [8]

      (6) McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.; Swider, K. E.; Rolison, D. R. J. Phys. Chem. B 1999, 103, 4825.

    9. [9]

      (7) Jude, O. I.; Kirill, L. J. Power Sources 2006, 117, 267.

    10. [10]

      (8) Xu, H. B.; Fan X. Z.; Lu, Y. H.; Zhong, L.; Kong, X. F.; Wang J. Carbon 2010, 48, 3300.

    11. [11]

      (9) Couper, A. M.; Pletcher, D.; Walsh, F. C. Chem. Rev. 1990, 90, 837.

    12. [12]

      (10) Zhi, J. F.; Guan B. Sci. Bull. 2006, 51, 497.

    13. [13]

      [只金芳, 关 波. 科学通报, 2006, 51, 497.]

    14. [14]

      (11) Rajeshwar, K.; Ibanez, J. G.; Swain, G. M. J. Appl. Electrochem. 1994, 24, 1077.

    15. [15]

      (12) Kapoor, A.; Viraraghavan, T. J. Environ. Eng. 1997, 123, 371.

    16. [16]

      (13) Wang, X. M.; Cong, E. D.; Luo, W. L.; Wang, J. L. Sci. China Ser. B 2008, 38, 824.

    17. [17]

      [王旭明, 从二丁, 罗文龙, 王建龙. 中国科学 B辑: 化学, 2008, 38, 824.]

    18. [18]

      (14) Prusse, U.; Vorlop, K. D. J. Mol. Catal. A: Chem. 2001, 173, 313.

    19. [19]

      (15) Fan, X. Z.; Xu, H. B.; Lu, Y. H.; Kong, X. F.; Wang, J. New Carbon Mater. 2011, (Accepted).

    20. [20]

      [范新庄, 徐海波, 芦永红, 孔祥峰, 王 佳. 新型炭材料, 2011, (已接收).]

    21. [21]

      (16) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Zhong, L.; Kong, X. F.; Wang, J. Electrochim. Acta 2010, (Under review).

    22. [22]

      (17) Joos, P.; Serrien, G. J. Colloid Interface Sci. 1991, 145, 291.

    23. [23]

      (18) Kim, J. H.; Nam, K. W.; Ma, S. B.; Kim, K. B. Carbon 2006, 44, 1963.

    24. [24]

      (19) Andrew, B.; Marshall, M. Electrochim. Acta 2010, 55, 7538.

    25. [25]

      (20) Tatsuki, H.; Ali, I. N.; Takeo, Y.; Don, N. F.; Satoshi, Y.; Osamu, T.; Hiroaki, H.; Motoo, Y.; Sumio, I.; Kenji, H. Adv. Funct. Mater. 2010, 20, 422.

    26. [26]

      (21) Ma, L. Study on the Chemical and Electrochemical Reactions of Oxidizer Containing Chlorine. M.S. Dissertation, Tongji University: Shanghai, 2007.

    27. [27]

      [马 雷, 含氯氧化物的化学及电化学转化

    28. [28]

      [D]. 上海: 同济大学, 2007.]

    29. [29]

      (22) Gu, Q. C.; Lou, S. C.; Dai, Q. P.; Huang, B. R.; Li, Q. J. Chemical Table. Nanjing: Jiangsu Science & Technology Publishing House, 1979; pp 559-560.

    30. [30]

      [顾庆超, 楼书聪, 戴庆平, 黄炳荣, 李乔钧. 化学用表. 南京: 江苏科技出版社, 1979; pp 559-560.]

    31. [31]

      (23) Xie, Q. F.; Chen, Y. M.; Huang, M. L.; Lin, B. Z. Acta Chim. Sin. 2008, 66, 2107.

    32. [32]

      [解庆范, 陈延民, 黄妙龄, 林碧洲. 化学学报, 2008, 66, 2107.]

    33. [33]

      (24) Sun, D. Z., Liu, H. T.; Huang, H. P.; Zhu, G. Y. Chin. J. Anal. Chem. 2007, 35, 139.

    34. [34]

      [孙旦子, 刘洪涛, 黄海平, 朱果毅. 分析化学, 2007, 35, 139.]


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(1349)
  • Abstract views(2557)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return