Citation: XU Hao, LU Fang, FU Zheng-Wen. Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering[J]. Acta Physico-Chimica Sinica, ;2011, 27(05): 1232-1238. doi: 10.3866/PKU.WHXB20110422 shu

Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

  • Received Date: 20 December 2010
    Available Online: 10 March 2011

    Fund Project: 上海科学技术委员会(08DZ2270500, 09JC1401300) (08DZ2270500, 09JC1401300) 国家自然科学基金(20773031) (20773031) 国家重点基础研究发展规划(973) (2007CB209702) (973) (2007CB209702) 国家高技术研究发展计划(863) (2007AA03Z322)资助项目 (863) (2007AA03Z322)

  • Transparent conductive Al-doped ZnO (AZO) and Si-codoped AZO (AZO:Si) films were deposited on square quartz substrates by radio frequency (RF) magnetron sputtering. The effect of distance between the substrate and target (Dst) and the effect of co-doping Si on the electrical and optical properties of the AZO films were systematically investigated. The resistivity, carrier concentration, and mobility were found to be strongly dependent on the Dst values. With a decrease in Dst, the carrier concentration and mobility increased significantly, which resulted in improved conductivity. The lowest resistivity of 4.94×10-4 Ω·cm was obtained at a Dst of 4.5 cm, and this was associated with a carrier concentration of 3.75×1020 cm-3 and a mobility of 33.7 cm2·V-1·s-1. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, and grain boundary scattering models were used to analyze the relationship between the carrier concentration and the mobility at different deposition (Dst) values. Transmittance spectra showed an average transmittance of >93% in the visible-near infrared range for all the samples and a blue shift of the absorption edge with a decrease in Dst. AZO:Si films had high-conductance and high-transmittance optical properties compared with AZO films, and they had better resistivity stability than the AZO films when exposed to a hot and damp atmosphere, which is practically meaningful.

  • 加载中
    1. [1]

      (1) Ellmer, K. Transparent Conductive Zinc Oxide; Springer Press: Heidelberg, 2008; pp 35-78.

    2. [2]

      (2) Kim, K. H.; Park, K. C.; Ma, D. Y. J. Appl. Phys. 1997, 81, 7764.

    3. [3]

      (3) Minami, T.; Sato, H.; Ohashi, K.; Tomofuji, T.; Takata, S. J. Cryst. Growth 1992, 117, 370.

    4. [4]

      (4) Ellmer, K.; Mientus, R. Thin Solid Films 2008, 516, 4620.

    5. [5]

      (5) Song, D. Y.; Widenborg, P.; Chin, W.; Aberle, A. G. Sol. Energy Mater. Sol. Cells 2002, 73, 1.

    6. [6]

      (6) Lorenz, M.; Kaidashev, E. M.; von Wenckstern, H.; Riede, V.; Bundesmann, C.; Spemann, D.; Benndorf, G.; Hochmuth, H.; Rahm, A.; Semmelhack, H. C.; Grundmann, M. Solid-State Electron 2003, 47, 2205.

    7. [7]

      (7) Singh, A. V.; Mehra, R. M.; Buthrath, N.; Wakahara, A.; Yoshida, A. J. Appl. Phys. 2001, 90, 5661.

    8. [8]

      (8) Hu, J.; rdon, R. G. J. Appl. Phys. 1992, 71, 880.

    9. [9]

      (9) Xue, S. W.; Zu, X. T.; Zheng, W. G.; Chen, M. Y.; Xiang, X. Physica B 2006, 382, 201.

    10. [10]

      (10) Lee, J. C.; Kang, K. H.; Kim, S. K.; Yoon, K. H.; Park, I. J.; Song, J. Sol. Energy Mater. Sol. Cells 2000, 64, 185.

    11. [11]

      (11) Kim, Y. H.; Lee, K. S.; Lee, T. S.; Cheong, B.; Seong, T. Y.; Kim, W. M. Appl. Surf. Sci. 2009, 255, 7251.

    12. [12]

      (12) Ellmer, K.; Vollweiler, G. Thin Solid Films 2006, 496, 104.

    13. [13]

      (13) Jeong, S. H.; Lee, J. W.; Lee, S. B.; Boo, J. H. Thin Solid Films 2003, 435, 78.

    14. [14]

      (14) Yang, W. F.; Liu, Z. G.; Peng, D. L.; Zhang, F.; Huang, H. L.; Xie, Y. N.; Wu, Z. Y. Appl. Surf. Sci. 2009, 255, 5669.

    15. [15]

      (15) Minami, T.; Sato, H.; Nanto, H.; Takata, S. Jpn. J. Appl. Phys. 1986, 25, L776.

    16. [16]

      (16) Nomoto, J.; Miyata, T.; Minami, T. J. Vac. Sci. Technol. A 2009, 27, 1001.

    17. [17]

      (17) Azaroff, L. V. Elements of X-ray Crystallography; McGraw- Hill: New York, 1968.

    18. [18]

      (18) Seto, J. Y. W. J. Appl. Phys. 1975, 46, 5247.

    19. [19]

      (19) Masetti, G.; Severi, M.; Solmi, S. IEEE Trans. Electron Devices 1983, 30, 764.

    20. [20]

      (20) Cornelius, S.; Vinnichenko, M.; Shevchenko, N.; Ro zin, A.; Kolitsch, A.; Möller, W. Appl. Phys. Lett. 2009, 94, 042103.

    21. [21]

      (21) Burstein, E. Phys. Rev. 1954, 93, 775.

    22. [22]

      (22) Moss, T. S. Proc. R. Proceedings of the Physical Society of London Section B 1954, 67, 775.

    23. [23]

      (23) Ziegler, E.; Heinrich, A.; Oppermann, H.; Stöver G. Phys. Status Solidi A 1981, 66, 635.

    24. [24]

      (24) Minami, T.; Miyata, T. Thin Solid Films 2008, 517, 1474.


  • 加载中
    1. [1]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    2. [2]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    3. [3]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(1232)
  • Abstract views(2229)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return