Citation: PEI Xiao-Mei, ZHAO Jian-Xi, WEI Xi-Lian. Effect of Sodium Salicylate on the Formation and Properties of Wormlike Micelles in Aqueous Cationic Gemini Surfactant Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(04): 913-917. doi: 10.3866/PKU.WHXB20110420 shu

Effect of Sodium Salicylate on the Formation and Properties of Wormlike Micelles in Aqueous Cationic Gemini Surfactant Solutions

  • Received Date: 6 December 2010
    Available Online: 8 March 2011

    Fund Project: 国家自然科学基金(20673021, 20873024, 21073081)资助项目 (20673021, 20873024, 21073081)

  • The effect of sodium salicylate (NaSal) on the formation and properties of wormlike micelles in aqueous solutions of 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3(OH)-12) and propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3-12) at a surfactant concentration of 50 mmol·L-1 was investigated using steady-state and frequency sweep rheological measurements. In the absence of a salt, 12-3(OH)-12 or 12-3-12 only produced spherical or small rod-like micelles at 50 mmol·L-1. The addition of NaSal promoted micellar growth yielding wormlike micelles in both systems. 12-3(OH)-12 showed a more sensitive response to the added NaSal compared with 12-3-12 and formed wormlike micelles at relatively lower salt concentrations. Moreover, the wormlike micelles formed by 12-3(OH)-12 were longer than those formed by 12-3-12, resulting in higher viscosity for the former solution. These were attributed to the hydrogen bonding interactions between the hydroxyl substituted spacers in the 12-3(OH)-12 system, which increased hydration on the aggregate surface and stimulated the dissociation of counterions. The higher charge on the 12-3(OH)-12 micellar surface was strongly associated with Sal-, which led to a tighter packing of the surfactant molecules in the micelles and thus strengthened the intermolecular hydrogen bonding interactions and effectively reinforced the growth of the 12-3(OH)-12 micelles.

  • 加载中
    1. [1]

      (1) Dreiss, C. A. Soft Matter 2007, 3, 956.

    2. [2]

      (2) Mazer, N. A.; Benedek, G. B.; Carey, M. C. J. Phys. Chem. 1976, 80, 1075.

    3. [3]

      (3) Kern, F.; Lemarechal, P.; Candau, S. J.; Cates, M. E. Langmuir 1992, 8, 437.

    4. [4]

      (4) Rehage, H.; Hoffmann, H. Mol. Phys. 1991, 74, 933.

    5. [5]

      (5) Buwalda, R. T.; Stuart, M. C.; Engberts, J. B. F. N. Langmuir 2000, 16, 6780.

    6. [6]

      (6) Ali, A. A.; Makhloufi, R. Colloid Polym. Sci. 1999, 277, 270.

    7. [7]

      (7) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1987, 3, 1081.

    8. [8]

      (8) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1988, 4, 354.

    9. [9]

      (9) Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller, W. G. J. Phys. Chem. 1992, 96, 474.

    10. [10]

      (10) Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1991, 113, 1451.

    11. [11]

      (11) Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11, 1448.

    12. [12]

      (12) Bernheim-Groswasser, A.; Zana, R.; Talmon, Y. J. Phys. Chem. B 2000, 104, 12192.

    13. [13]

      (13) Pei, X. M.; Zhao, J. X.; Ye, Y. Z.; You, Y.; Wei, X. L. Soft Mater 2011, DOI: 10.1039/c0sm01071e.

    14. [14]

      (14) You, Y.; Zhao, J. X.; Jiang, R.; Cao, J. J. Colloid Polym. Sci. 2009, 287, 839.

    15. [15]

      (15) Jiang, R.; Zhao, J. X.; Hu, X. M.; Pei, X. M.; Zhang, L. X. J. Colloid Interface Sci. 2009, 340, 98.

    16. [16]

      (16) Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007, 311, 276.

    17. [17]

      (17) Kern, F.; Lequeux, F.; Zana, R.; Candau, S. J. Langmuir 1994, 10, 1714.

    18. [18]

      (18) Karaborni, S.; Esselink, K.; Hilbers, P. A.; Smit, B.; Van Oss, N. M.; Zana, R. Science 1994, 266, 254.

    19. [19]

      (19) Pei, X. M.; You, Y.; Zhao, J. X.; Deng, Y. S.; Li, E. J.; Li, Z. X. J. Colloid Interface Sci. 2010, 351, 457.

    20. [20]

      (20) Cates, M. E. Macromolecules 1987, 20, 2289.

    21. [21]

      (21) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758.

    22. [22]

      (22) Oda, R.; Narayanan, J.; Hassan, P. A.; Manohar, C.; Salkar, R. A.; Kern, F.; Candau, S. J. Langmuir 1998, 14, 4364.

    23. [23]

      (23) Acharya, D. P.; Kunieda, H.; Shiba, Y.; Aratani, K. J. Phys. Chem. B 2004, 108, 1790.

    24. [24]

      (24) Saha, S. K.; Moazzam, M. J.; Chakraborty, A. A.; Bit, G.; Das, S. K. J. Phys. Chem. B 2008, 112, 4642.


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(1292)
  • Abstract views(2531)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return